
CMSC416 Instructor Notes Spring 2024
Topics: Message Passing and MPI

1 Shared Memory vs. Distributed Memory Systems
Shared Memory Systems: In these systems, all processors have access to a common memory space. This

can be uniform (UMA) where each processor has equal access time to memory or non-uniform (NUMA)
where access time varies depending on memory location.

Distributed Memory Systems: Here, each processor has its own private memory. Processes communi-
cate by sending and receiving messages. This model is the foundation of MPI.

Shared Memory Models: Utilize threads where all threads have access to the entire memory space.
Examples include Pthreads and OpenMP.

Distributed Memory Models (Message Passing Models): Utilize processes with each having access to its
own memory space. MPI is a prime example of this model.

Hybrid Models: Combine shared and distributed memory models, often using OpenMP within nodes
and MPI across nodes for efficiency.

2 Basic MPI
Message Passing Interface (MPI): A standard for writing parallel programs. MPI allows for commu-

nication between processes by passing messages. It’s essential for distributed computing environments
where processes may run on different physical machines. MPI programs follow the SPMD (Single Program
Multiple Data) model, where all processes execute the same program but may perform different operations
based on their rank. Main MPI routines:

• MPI Init and MPI Finalize: Required to start and end any MPI program, initializing and cleaning up
the MPI environment.

• MPI Comm size and MPI Comm rank: Used to determine the size of the communicator (total num-
ber of processes) and the rank (the process ID) within that communicator.

• MPI Send and MPI Recv: Core functions for sending and receiving messages between processes.

Important Points:
• MPI is designed for portability across various hardware architectures.
• Proper initialization and finalization of MPI programs are crucial for resource management and avoid-

ing runtime issues.
• MPI uses ranks to identify processes. These are integer IDs assigned to each process within a commu-

nicator.
• Communicators in MPI define a group of processes that can communicate with each other. MPI COMM WORLD

is a default communicator that includes all processes.
To compile an MPI program, one uses ‘mpicc‘ followed by the source code filename. Running an MPI

program involves specifying the number of processes with ‘mpiexec‘ or ‘mpirun‘. Proper allocation of
resources (e.g., number of processors) is essential when running MPI programs to avoid inefficiencies or
runtime errors.

2.1 Blocking Communication in MPI
MPI provides mechanisms for sending and receiving messages between processes. The basic operations

for this are ‘MPI Send‘ and ‘MPI Recv‘. These operations are blocking, meaning the ‘MPI Send‘ opera-
tion will not complete until the message has been copied out of the send buffer, and ‘MPI Recv‘ will not
complete until the received message has been copied into the receive buffer. Deadlocks can occur if two
processes wait on each other to receive messages. Careful programming is required to avoid these situa-
tions.

1



3 Non-Blocking Communication
Involves operations that allow a program to initiate a communication request and proceed without wait-

ing for the operation to complete. This is achieved using request objects that link a non-blocking operation
with its completion.

Request Objects: Opaque objects managed by MPI to track non-blocking operations. They are used with
functions like MPI Wait or MPI Test to check for the completion of non-blocking sends and receives.

MPI Isend and MPI Irecv receive allow processes to perform other computations while waiting for com-
munication to complete. This is useful for overlapping computation with communication, potentially im-
proving overall performance.

4 Communicators
A communicator defines a group of processes that can communicate with one another. Processes within

a communicator are assigned unique ranks. This system allows for flexible and organized communication
patterns among processes.

Creating Sub-communicators: Useful for organizing processes into smaller groups for specific tasks,
such as operations within rows or columns of a virtual proccess grid.

5 Collective Operations
Operations that involve all processes within a communicator. Examples include MPI Barrier, MPI Bcast,

MPI Reduce, MPI Allreduce, MPI Scatter, and MPI Gather. These operations facilitate synchronization, data
distribution, aggregation, and collection among processes.

MPI Barrier: A synchronization operation that blocks processes at a certain point until all processes in
the communicator reach the barrier.

MPI Bcast: Broadcasts data from one process (the root) to all other processes in a communicator. This
is a collective operation that simplifies data distribution tasks. It demonstrates how MPI treats buffers
differently based on whether a process is the root or a receiver.

MPI Reduce: Aggregates data from all processes in a communicator to a single process, using an op-
eration like sum, min, or max. It requires separate send and receive buffers, with the receive buffer only
needed at the root process.

MPI Allreduce: Similar to MPI Reduce, but the zesult of the aggregation is distributed back to all pro-
cesses.1

MPI Scatter and MPI Gather: Scatter is used to distribute distinct pieces of data from a root process
to all processes in a communicator, while Gather collects distinct pieces of data from all processes to a root
process. Variants like Scatterv and Gatherv allow for different amounts of data to be sent or received.

MPI Wtime: A function for measuring elapsed time, useful for benchmarking parts of a program.

6 Message Passing Protocols in MPI
MPI uses different protocols for sending messages, depending on the size.
Eager Protocol: Used for small messages. The MPI runtime sends the message without waiting for the

receiver to allocate buffer space.
Rendezvous Protocol: Used for larger messages. It involves a handshake between the sender and re-

ceiver to ensure buffer space is allocated before sending the message.
Short Message Protocol: Similar to eager but for very short messages, where data is sent in the message

envelope itself.
The MPI runtime automatically decides which protocol to use based on message size. However, you

can adjust the threshold sizes using environment variables to optimize performance.

2



7 MPI and Network Communication
MPI abstracts the details of the underlying network and hardware, ensuring portability. It interacts with

lower-level communication libraries provided by hardware vendors, like UCX or PSM.
When sending a message, it goes from the process’s memory to the network interface card (NIC),

through potentially multiple network switches (with their buffers), to the destination NIC, and finally to
the receiving process’s memory.

3


	Shared Memory vs. Distributed Memory Systems
	Basic MPI
	Blocking Communication in MPI

	Non-Blocking Communication
	Communicators
	Collective Operations
	Message Passing Protocols in MPI
	MPI and Network Communication

