CMSC 433 Spring 2024 (&* UNIVERSITY OF
,J"

MARYLAND

SAT / SMT Solving

11/16/2023

http://www.mse.umd.edu/logos/images/UMD-logo.jpg

Tautology-proving in Dafny

* Dafny proves tautologies when verifying code

— Needs to prove that method preconditions imply the weakest
precondition of method postconditionsfollowing statements

e Uses “SMT” (= “Satisfaction Modulo Theories”) solvers
 We will see how SMT solvers work....

Topic 16: SAT / SMT solving

Refresher: Weakest Preconditions

* Weakest preconditions start from code S and postcondition Q!

— If Q is a postcondition and S is code, then P is the weakest precondition for
Sand Q if and only if:

— {P} S {Q} is valid

— P is the “most general” among all preconditions P’ such that {P'} S {Q} is
valid

“Most general” means that for all P’ such that {P'} S {Q}is valid, P’ = P

e Some facts

— For traditional imperative languages: weakest preconditions always exist!
* Regardless of form of S and Q, weakest precondition can be written down as a formula
* Notation: wp(S, Q) used for weakest precondition of S, Q

— wp(S, Q) can (often) be computed syntactically!

Computing wp(S, Q): Assignment

* Suppose Sisx := t. Whatiswp(S,Q)?
-wp(S,Q) = Q[x = t]
e Example:
{7}
X 1= X + 1;
{x =42}

Computing wp(S, Q): Assignment

* Suppose Sisx := t. Whatiswp(S,Q)?
-wp(S,Q) = Q[x = t]
e Example:
{x+1 =142}

X 1= X + 1;
{x = 42}

Computing wp(S, Q): Assignment

* Suppose Sisx := t. Whatiswp(S,Q)?
-wp(S,Q) = Q[x = t]

e Example:

t?)
X 1=y *y;
{x >0&&y =1z}

Computing wp(S, Q): Assignment

* Suppose Sisx := t. Whatiswp(S,Q)?
-wp(S,Q) = Q[x = t]

e Example:
lyxy>0&&y =1z}

X 1=y *y;
{x >0&&y =1z}

Computing wp(S, Q): Statement Blocks

What is the

assert P;: weakest P?
sl; s2;
assert Q;

Computing wp(S, Q): Statement Blocks

Computing wp(S, Q): Statement Blocks

Computing wp(S, Q): Statement Blocks

fy *y+1=>20&&y =12}

X 1=y *y;
{x+1=>20&&y =1z}
X 1= X + 1;

{x >0&&y=1z}

Computing wp(S, Q): Statement Blocks

* Suppose S is Sq; 5,5 S,;

 wp(S, Q) is computed starting at the end of the block and
working forward
wp(P,S) = Py, where:

P, = Wp(Sn» Q)
P4 = Wp(Sn—ern)

Pl — Sp(Slip‘n—l)

Computing wp(P, S): if-then-else

assert P;.

if b O
{. O
s1;

} else { What is the
s2; weakest P?

¥

assert Q;

12

Computing wp(P, S): if-then-else

e Suppose S =if B {S } else {S" }, where B is condition
and S, S’ are blocks of statements. What is wp(S, Q)?
— Suppose we compute P; = wp(S',Q), P, = wp(S", Q)

— This gives the preconditions under the assumption that B is true
(P;)and under the assumption that B is false (P,)

—Sowp(S,P) =(B=>P,)A(=B=>P,)!

13

Computing wp(P, S): if-then-else
{7}
if x <y {

min := X;

} else {

min := y;

{min < x}

Computing wp(P, S): if-then-else
17}
if x <y {
)
min := X;
{min < x}
} else {
(7)
min := vy;
{min < x}

{min < x}

Computing wp(P, S): if-then-else

{?]
if x <y {
{x < x}
min := X;
{min < x}
} else {
1y =x
min := vy;
{min < x}
}

{min < x}

Computing wp(P, S): if-then-else
fx<y=>x<x&&!'x<y)=>y<x}

if x <y A
{x < x}

min := X;
{min < x}

} else {

| {1y =xj

min := y;
{min < x}

}

Computing wp (P, S): while loops

assert P; _

while b O
O
{
S; What is the
} weakest P?

assert Q;

18

Computing wp (P, S): while loops

PP
while b
invariant I ‘0@
{ Use the
S; Invariant
}

assert Q;

19

Computing wp(P, S): while loops

17}
while x > ©
invariant x >= ©

Computing wp(P, S): while loops

{x = 0}
while x > ©
invariant x >= ©

Why?

method Min(x:int,y:int) returns (min
requires true
ensures min <= X
{
if x < y {
min X;
} else
min

I

y;
¥
¥

int)

23

method Min(x:int,y:int) returns (min
requires true
ensures min <= X
!
if x < y {
min X;
} else
min

I

y;
¥
¥

int)

24

method Min(x:int,y:int) returns (min
requires true
ensures min <= X

{

if x <y {
min

} else
min

I~ 1l

y;
¥

{fmin < x}

int)

25

method Min(x:int,y:int) returns (min :

requires true
ensures min <= X

{

Weakest
Precondition

int)

26

method Min(x:int,y:int
requires true cog@
ensures min <= X

Does this...

fx<y=>x<x&&!(x<y)>y<x}

if x <y {
min := X;
} else {
min := vy;
}

{min < x}

27

Verification Conditions: while loops

L P}
while b
invariant I

1
¥

S

0}

Verification Conditions: while loops

while
invagillant I

S Weakest
} Precondition

Verification Conditions: while logt

Does this...

{P}o‘.

{I}“
while b
invariant I

{
¥

S

1}

Verification Conditions: while loops

{P}->{I}
while b
invariant I

{
{I&&b} - wp (s,1)

S

!}

{I && ! b} > {0}

¥

Tautology-proving in Dafny

* Dafny proves tautologies when verifying code

— Needs to prove that method preconditions imply the weakest
precondition of method postconditionsfollowing statements

e Uses “SMT” (= “Satisfaction Modulo Theories”) solvers
 We will see how SMT solvers work....

Topic 16: SAT / SMT solving

32

SMT Solving Uses SAT Solving

 SMT solvers rely on “SAT solvers”

* SAT solvers determine if propositional formulas are satisfiable

* Propositional formulas consist of variables (p, g, etc.) and
propositional operators (=, V, A, =, &, etc.).

SMT Solving

* Generalizes SAT solving to data theories!
* The SMT problem for data theory D

— Given: quantifier-free formula (no V, 3) predicate calculus formula @

@ can involve atomic predicates from D, e.g. 2x + y < 0, as well as propositional
connectives 1,V A, etc.

— Determine: is @ satisfiable?

Topic 16: SAT / SMT solving 34

SMT Solving an Active Theory of Research!

e Some SMT solvers: 73, CVC4, Boolector, ...

e Current work focuses on decision procedures for basic data
theories, engineering aspects of efficient SMT solving, new
applications, ...

	Slide 0: SAT / SMT Solving
	Slide 1: Tautology-proving in Dafny
	Slide 2: Refresher: Weakest Preconditions
	Slide 3: Computing w p open paren cap S ,cap Q close paren : Assignment
	Slide 4: Computing w p open paren cap S ,cap Q close paren : Assignment
	Slide 5: Computing w p open paren cap S ,cap Q close paren : Assignment
	Slide 6: Computing w p open paren cap S ,cap Q close paren : Assignment
	Slide 7: Computing wpopen paren cap S ,cap Q close paren : Statement Blocks
	Slide 8: Computing wpopen paren cap S ,cap Q close paren : Statement Blocks
	Slide 9: Computing wpopen paren cap S ,cap Q close paren : Statement Blocks
	Slide 10: Computing wpopen paren cap S ,cap Q close paren : Statement Blocks
	Slide 11: Computing w p open paren cap S ,cap Q close paren : Statement Blocks
	Slide 12: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 13: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 14: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 15: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 16: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 17: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 18: Computing w p open paren cap P ,cap S close paren : while loops
	Slide 19: Computing w p open paren cap P ,cap S close paren : while loops
	Slide 20: Computing w p open paren cap P ,cap S close paren : while loops
	Slide 21: Computing w p open paren cap P ,cap S close paren : while loops
	Slide 22: Why?
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Verification Conditions: while loops
	Slide 29: Verification Conditions: while loops
	Slide 30: Verification Conditions: while loops
	Slide 31: Verification Conditions: while loops
	Slide 32: Tautology-proving in Dafny
	Slide 33: SMT Solving Uses SAT Solving
	Slide 34: SMT Solving
	Slide 35: SMT Solving an Active Theory of Research!

