CMSC 433 Spring 2024 2 UNIVERSITY OE
'ﬁy}!

Leo Lampropoulos MAMAND

Loop Invariants

http://www.mse.umd.edu/logos/images/UMD-logo.jpg

Annotating Programs

General intuition behind annotations: label points in program with assertions
that should hold when control is at that point!

— You can do this using your intuition

— Strong postconditions / weakest preconditions give you a systematic way to generate
these assertions

— In many cases (e.g. assighment, statement blocks, if-then-else) strongest postconditions
/ weakest preconditions can computed automatically!

When is an annotation of a piece of code complete and correct?

— An annotation is complete if every statement in the code has both a precondition and a
postcondition (these will be shared: the postcondition of one statement will be a
precondition of the following statement)

— An annotation is correct if every embedded Hoare triple is valid

If an annotation is complete and correct, then the Hoare triple consisting of the
precondition of the code, the code itself, and the postcondition is valid!

10 [X = a]} X:=a {Q}

Cq1
C2

tPrcadQ}
tQ}c2{R}
P} ciseo iR}

fP /\ b} c1 {Q}
fP /\ ~ b} c; {Q}

{P} if b then cq else ¢y, end {Q}

Recall: Three Key Concepts in Systematic
Annotation Construction

e Strongest postconditions
* Weakest preconditions
* Loop invariants

Annotations and Loops

» Strongest postconditions / weakest preconditions still exist for
loops!

 However, they cannot generally be computed automatically

* Loop invariants fill this gap
— They are propositions
— They must be added manually in Dafny

— Once added, Dafny can check that they really are invariants!

Topic 5: Loop Invariants

Defining “Loop Invariant”

Let code S bewhile B {S'} ({S'} isthe loop body)

Then a proposition I is a loop invariant for S if and only if
{INB}S' {I}isvalid

— If you start S’ in a state satisfying I and loop condition B ...

— ... then whenever S’ terminates the result state satisfies I'!

This means that as the loop “loops”, I is being kept true
Also: if I is a loop invariant for Sthen{I} S {I A =B }is valid

— If loop terminates then B must be false (so =B must be true)
— Since loop body keeps I true, when loop exists I A =B must hold!

fQ [X » al} X:=a {Q}

Cq
C2

fPYca fQ}
fQ} xR}
fP3}cisco fRE

fp /\ b} c1 {Q}
fp /\ ~ b} co {Q}

P} if b then c; else c, end {Q}

{P /\ b} c {P}
fP} while b do c end {P /\ ~ b}

Loop Invariants in Dafny

method FindMinVal (a : array<int>) returns (min : int)
requires a.Length > @ // Precondition
ensures forall i : int :: @ <= 1 < a.Length ==> min <= a[i] // Postcondition

min := a[@];

var 1 := 1;

while (i < a.Length)
invariant

{
if a[i] < min {

min := a[i];

}
i = i+1;

}

}

* Declared with keyword “invariant” after loop invocation, before body

* You can have as many invariant declarations as you like; multiple invariants are interpreted as being
conjoined

Loop Invariants in Dafny

method FindMinVal (a : array<int>) returns (min : int)
requires a.Length > @ // Precondition
ensures forall i : int :: @ <= 1 < a.Length ==> min <= a[i] // Postcondition

min := a[@];
var 1 := 1;
while (i < a.Length)
invariant forall j : int :: @ <= j < 1 ==> min <= a[j]
{
if a[i] < min {
min := a[i];
}
i = i+1;
}
}

* Declared with keyword “invariant” after loop invocation, before body

* You can have as many invariant declarations as you like; multiple invariants are interpreted as being
conjoined

Strengthening Invariants

* Sometimes Dafny complains that it cannot complete the
verification of a given invariant

e Often you can add extra invariants to give facts to Dafny that it
needs

Adding Invariants

method FindMinVal (a : array<int>) returns (min : int)
requires a.Length > © // Precondition
ensures forall 1 : int :: @ <= 1 < a.Length ==> min <= a[i] // Postcondition

min := a[@];
var i := 1;
while (i < a.Length)
invariant @ <= i <= a.lLength // Extra invariant to constrain i
invariant forall j : int :: @ <= j < 1 ==> min <= a[j]
{
if a[i] < min {
min := a[i];
}
i = i+1;
}
}

Dafny could not complete the previous proof because it did not know that 1 <= a.Length
is preserved by the loop

Adding this enables completion of verification

10

Another Example

method Search (key : int, a : array<int>) returns (found : bool)

ensures found <==> exists i : int :: @ <= 1 < a.Length && key == a[i]
{

var i : int := 0;

found := false;

while (i < a.Length)
invariant i <= a.Length;

invariant found <==> exists j : int :: @ <= j < 1 & & key == a[j]
{

if (key == a[i])

{

found := true;

}

i = i+1;
}

Yet Another Example

method Locate (key : int, a : array<int>) returns (found :

ensures -1 <= index < a.Length

ensures found ==> index >= 0 && key == a[index]
ensures !found ==> index == -1
{
var 1 : int := 0;
found := false;
index := -1;
while (i < a.Length)
invariant i1 <= a.Length
invariant found ==> key == a[index]
invariant (!found) ==> index == -1
{
if (key == a[i])
{
return true, 1i;
}
i := i+1;
}
}

bool, index :

int)

12

Verifying Methods in Dafny

Add requires, ensures clauses
Add invariants to all loops

If it verifies, you are done!
Otherwise

— Strengthen / weaken invariants
— Strengthen requires, ensures

— Start constructing the annotation on your own to see if that helps
Dafny

13

	Slide 0: Loop Invariants
	Slide 1: Annotating Programs
	Slide 2
	Slide 3: Recall: Three Key Concepts in Systematic Annotation Construction
	Slide 4: Annotations and Loops
	Slide 5: Defining “Loop Invariant”
	Slide 6
	Slide 7: Loop Invariants in Dafny
	Slide 8: Loop Invariants in Dafny
	Slide 9: Strengthening Invariants
	Slide 10: Adding Invariants
	Slide 11: Another Example
	Slide 12: Yet Another Example
	Slide 13: Verifying Methods in Dafny

