
CMSC 433 Spring 2024
Leo Lampropoulos

Loop Invariants

http://www.mse.umd.edu/logos/images/UMD-logo.jpg

• General intuition behind annotations: label points in program with assertions
that should hold when control is at that point!
– You can do this using your intuition
– Strong postconditions / weakest preconditions give you a systematic way to generate

these assertions
– In many cases (e.g. assignment, statement blocks, if-then-else) strongest postconditions

/ weakest preconditions can computed automatically!

• When is an annotation of a piece of code complete and correct?
– An annotation is complete if every statement in the code has both a precondition and a

postcondition (these will be shared: the postcondition of one statement will be a
precondition of the following statement)

– An annotation is correct if every embedded Hoare triple is valid

• If an annotation is complete and correct, then the Hoare triple consisting of the
precondition of the code, the code itself, and the postcondition is valid!

Annotating Programs

1

2

• Strongest postconditions

• Weakest preconditions

• Loop invariants

Recall: Three Key Concepts in Systematic
Annotation Construction

3

• Strongest postconditions / weakest preconditions still exist for
loops!

• However, they cannot generally be computed automatically

• Loop invariants fill this gap

– They are propositions

– They must be added manually in Dafny

– Once added, Dafny can check that they really are invariants!

Annotations and Loops

Topic 5: Loop Invariants 4

• Let code 𝑆 be while 𝐵 { 𝑆′ } ({ 𝑆′} is the loop body)

• Then a proposition 𝐼 is a loop invariant for 𝑆 if and only if
𝐼 ∧ 𝐵 𝑆′ { 𝐼 } is valid
– If you start 𝑆′ in a state satisfying 𝐼 and loop condition 𝐵 …

– … then whenever 𝑆′ terminates the result state satisfies 𝐼!

• This means that as the loop “loops”, 𝐼 is being kept true

• Also: if 𝐼 is a loop invariant for 𝑆 then 𝐼 𝑆 { 𝐼 ∧ ¬𝐵 } is valid
– If loop terminates then 𝐵 must be false (so ¬𝐵 must be true)

– Since loop body keeps 𝐼 true, when loop exists 𝐼 ∧ ¬𝐵 must hold!

Defining “Loop Invariant”

5

6

• Declared with keyword “invariant” after loop invocation, before body
• You can have as many invariant declarations as you like; multiple invariants are interpreted as being

conjoined

Loop Invariants in Dafny

7

method FindMinVal (a : array<int>) returns (min : int)
 requires a.Length > 0 // Precondition
 ensures forall i : int :: 0 <= i < a.Length ==> min <= a[i] // Postcondition
{
 min := a[0];
 var i := 1;
 while (i < a.Length)
 invariant
 {
 if a[i] < min {
 min := a[i];
 }
 i := i+1;
 }
}

• Declared with keyword “invariant” after loop invocation, before body
• You can have as many invariant declarations as you like; multiple invariants are interpreted as being

conjoined

Loop Invariants in Dafny

8

method FindMinVal (a : array<int>) returns (min : int)
 requires a.Length > 0 // Precondition
 ensures forall i : int :: 0 <= i < a.Length ==> min <= a[i] // Postcondition
{
 min := a[0];
 var i := 1;
 while (i < a.Length)
 invariant forall j : int :: 0 <= j < i ==> min <= a[j]
 {
 if a[i] < min {
 min := a[i];
 }
 i := i+1;
 }
}

• Sometimes Dafny complains that it cannot complete the
verification of a given invariant

• Often you can add extra invariants to give facts to Dafny that it
needs

Strengthening Invariants

9

• Dafny could not complete the previous proof because it did not know that i <= a.Length
is preserved by the loop

• Adding this enables completion of verification

Adding Invariants

10

method FindMinVal (a : array<int>) returns (min : int)
 requires a.Length > 0 // Precondition
 ensures forall i : int :: 0 <= i < a.Length ==> min <= a[i] // Postcondition

{
 min := a[0];
 var i := 1;
 while (i < a.Length)
 invariant 0 <= i <= a.Length // Extra invariant to constrain i
 invariant forall j : int :: 0 <= j < i ==> min <= a[j]
 {
 if a[i] < min {
 min := a[i];
 }
 i := i+1;
 }

}

Another Example

11

method Search (key : int, a : array<int>) returns (found : bool)
 ensures found <==> exists i : int :: 0 <= i < a.Length && key == a[i]
{
 var i : int := 0;
 found := false;
 while (i < a.Length)
 invariant i <= a.Length;
 invariant found <==> exists j : int :: 0 <= j < i && key == a[j]
 {
 if (key == a[i])
 {
 found := true;
 }
 i := i+1;
 }
}

Yet Another Example

12

method Locate (key : int, a : array<int>) returns (found : bool, index : int)
 ensures -1 <= index < a.Length
 ensures found ==> index >= 0 && key == a[index]
 ensures !found ==> index == -1

{
 var i : int := 0;
 found := false;
 index := -1;
 while (i < a.Length)
 invariant i <= a.Length
 invariant found ==> key == a[index]
 invariant (!found) ==> index == -1
 {
 if (key == a[i])
 {
 return true, i;
 }
 i := i+1;
 }

}

• Add requires, ensures clauses

• Add invariants to all loops

• If it verifies, you are done!

• Otherwise

– Strengthen / weaken invariants

– Strengthen requires, ensures

– Start constructing the annotation on your own to see if that helps
Dafny

Verifying Methods in Dafny

13

	Slide 0: Loop Invariants
	Slide 1: Annotating Programs
	Slide 2
	Slide 3: Recall: Three Key Concepts in Systematic Annotation Construction
	Slide 4: Annotations and Loops
	Slide 5: Defining “Loop Invariant”
	Slide 6
	Slide 7: Loop Invariants in Dafny
	Slide 8: Loop Invariants in Dafny
	Slide 9: Strengthening Invariants
	Slide 10: Adding Invariants
	Slide 11: Another Example
	Slide 12: Yet Another Example
	Slide 13: Verifying Methods in Dafny

