CMSC 433 Spring 2024 Leo Lampropoulos

Program Specifications with Dafny

A General Pattern

Formal Specifications

- We use preconditions / postconditions to specify desired behavior of code
 - Precondition: assumptions for when the code starts executing
 - Postcondition: what must be satisfied when code terminates
- Both preconditions and postconditions will be specified in the language of propositions
- This kind of correctness is called *partial correctness*, as it doesn't require code termination
 - Total correctness imposes an extra termination requirement
 - We will talk about total correctness later

Formal Specifications in Dafny

- Given at the method level
 - Precondition: requires clause(s)
 - Postcondition: ensures clause(s)
- If either type of clause is missing: associated condition is assumed to be "true" (i.e. no restriction)

Dafny Formula Notation && ==> exists x : T :: φ forall x : T :: φ

- In forall, exists formulas, Dafny requires a type for x!
- Parentheses also allowed
- Boolean-valued expressions in Dafny programs can also be atomic predicates in formulas

Min

```
method Min (x : int, y : int) returns (min : int)
    ensures min <= x && min <= y;
{
    if (x < y) {
        min := x;
    }
    else {
        return y;
    }
}</pre>
```

- requires clause is missing (so is assumed to be "true", meaning all inputs are allowed)
- ensures clause states that output is \leq both x and y

Min (cont.)

```
method Min (x : int, y : int) returns (min : int)
    ensures min <= x && min <= y;
    ensures min == x || min == y;
{
        if (x < y) {
            min := x;
        }
        else {
            min := y;
        }
}</pre>
```

- The postcondition can actually be more precise!
- When there are two ensures (or requires) clauses they are assumed to be conjoined ("and-ed") together

Partial Correctness, Formally

- Traditional (non-Dafny) notation: $\{P\} S \{Q\}$
 - -P is the precondition
 - S is the code ("statement")
 - -Q is the postcondition

- Often $\{P\} S \{Q\}$ is called a *Hoare Triple*, after Tony Hoare (Turing Award 1980)
- $\{P\} S \{Q\}$ is *valid* if and only if:

for every state for which P holds, if we execute statement S, we terminate in a state where Q holds

- In words: {*P*} *S* {*Q*} is valid if and only if, when *S* is started in a state satisfying *P* and *S* terminates, the final state satisfies *Q*
- Validity of {P} S {Q} = "S satisfies the precondition / postcondition specification corresponding to P and Q"

Partial Correctness (cont.)

- What does it mean for a program to "start in a state / terminate in a state"?
 - Answer: Semantics of programming languages!
 - Pioneered by Dana Scott (Turing Award 1976)
 - Other luminaries
 - Gordon Plotkin
 - Gilles Kahn
 - Take CMSC 631!

Programming Language Semantics

- Goal (imperative languages): interpret code as transformations from input states to result states
- Common approaches (S is code, Σ is the set of all states)
 - "Denotational": Define $\llbracket S \rrbracket \in \Sigma \to \Sigma$ (function from states to states)
 - Function is usually partial (i.e. not defined for all inputs)
 - Sometimes $\llbracket S \rrbracket \in \Sigma \to 2^{\Sigma}$ (i.e. returns sets of states, not single states, due to nondeterminism)
 - "Operational (Big-Step)": Define relation $(S, \sigma) \Rightarrow \sigma'$
 - $\sigma, \sigma' \in \Sigma$
 - $\langle S, \sigma \rangle \Rightarrow \sigma'$ means *S*, starting in state σ , can terminate in state σ'
 - "Operational (Small-Step)": Define relation $(S, \sigma) \rightarrow (S', \sigma')$
 - $\sigma, \sigma' \in \Sigma, S'$ is code
 - $\langle S, \sigma \rangle \rightarrow \langle S', \sigma' \rangle$ means S, starting in state σ , can perform one execution step, with σ' being the new state and S' being the remaining code to execute.

Dafny Verifier

- Tries to prove validity of Hoare Triples for methods!
- How!
 - It constructs *annotations* of programs
 - An annotation puts a precondition in front of every statement and a postcondition after every statement
 - In Dafny: this can be done manually with assert statements
 - assert statements take a predicate-calculus formula as an argument
 - If it succeeds, i.e. if all the Hoare triples embedded in the annotated code are valid, the specification holds!
- The annotation method is often called the *intermittent invariant method*
 - Due to Bob Floyd (1967)
 - Floyd won Turing Award in 1978

Manually Annotated Min

```
method Min (x : int, y : int) returns (min : int)
    ensures min <= x && min <= y</pre>
{
    assert true;
    if (x < y) {
         assert x < y;</pre>
         min := x;
         assert min < y;</pre>
    }
    else {
         assert x >= y;
         min := y;
         assert min <= x;</pre>
     }
    assert min <= x && min <= y;</pre>
}
```

More on Annotated Programs

- Annotation reflects "what you think is true" at the given points in code
 - If you are right: this proves precondition / postcondition!
 - If you are not right: annotation is incorrect, and is not a proof
- Dafny verifier:
 - Attempts to build annotations automatically
 - Tries to check if given annotations are indeed proofs

If it cannot complete check, Dafny verifier complains

How Do You Build Annotations Systematically?

- Strongest postconditions
- Weakest preconditions
- Loop invariants

Strongest Postconditions

- If *P* is a precondition (so, a proposition) and *S* is code, then *Q* is the strongest postcondition for *P* and *S* if and only if:
 - $\{P\} S \{Q\}$ is valid
 - Q is the "most precise" among all postconditions Q' such that $\{P\} S \{Q'\}$ is valid "Most precise" means that if Q' is such that $\{P\} S \{Q'\}$ is valid, then $Q \Rightarrow Q'$
- Some facts
 - For traditional imperative languages: strongest postconditions always exist!
 - Regardless of form of P and S, strongest postcondition can be written down as a formula
 - Notation: sp(P,S) used for strongest postcondition of P, S
 - sp(P, S) can (often) be computed syntactically!

Computing sp(P, S): Assignment

- Suppose S is (Dafny) statement x := 1. What is sp(P,S)?
 - First guess: $P \land (x = 1)$
 - But this doesn't always work!
 - Suppose P is $x \neq 1$
 - This proposed definition would make $sp(P, S) = (x \neq 1 \land x = 1) \equiv false$
 - {*P*} *S* {*sp*(*P*, *S*)} is not valid in this case!
- Problem:
 - -P can mention the variable being assigned to
 - *P* might no longer be true after the assignment

Computing sp(P, S) : Assignment

- Another approach for sp(P, S) when S is x := 1
 - Introduce a new variable u (not free in P) that represents the "old value" of x
 - Define $sp(P, S) = \exists u. (P[x \coloneqq u] \land x = 1)$
- Recall the previous example, where P is $x \neq 1$
 - $-P[x \coloneqq u]$ is $u \neq 1$
 - Then sp(P, S) is $\exists u. (u \neq 1 \land x = 1)$
 - This works!

- Note that $\exists u. (u \neq 1 \land x = 1)$ can be simplified to x = 1 (why?)

Computing sp(P, S): Assignment

assert *P*; x := t; assert $\exists u. (P[x \coloneqq u] \land x = t[x \coloneqq u];$

Example

Suppose *P* is $x \ge 1$ and *S* is x := x + 1.

– In this case

$$sp(P,S) = \exists u. (P[x \coloneqq u] \land x = (x+1)[x \coloneqq u])$$

= $\exists u. (u \ge 1 \land x = u + 1)$

– This can be simplified to $x \ge 2!$

• Since
$$x = u + 1$$
, $u = x - 1$

• You can replace u by x - 1 in formula and simplify! $\exists u. (u \ge 1 \land x = u + 1) \equiv \exists u. (x - 1 \ge 1 \land x = x - 1 + 1)$ $\equiv (x \ge 2 \land x = x)$ $\equiv x \ge 2$

Computing sp(P, S): Statement Blocks

- Suppose S is S₁; S₂; … S_n; (like one would find in if-then-else or a loop body). What is sp(P,S)?
- Answer: chain them together!

That is, $sp(P, S) = Q_n$, where: $Q_1 = sp(P, S_1)$ $Q_2 = sp(Q_1, S_2)$ \vdots $Q_n = sp(Q_{n-1}, S_n)$

Computing sp(P, S): Statement Blocks

assert P;
s1;
assert sp(P,s1);
s2;
assert sp(sp(P,s1),s2);

Example

- Suppose P is $x \ge 1$ and $S = S_1; S_2;$, where S_1 is x := x + 1and S_2 is x := x + 2. What is sp(P,S)? $Q_1 = sp(P, S_1)$ $= \exists u. (u \geq 1 \land x = u + 1)$ $\equiv x \geq 2$ $Q_2 = sp(Q_1, S_2)$ $= \exists u. (u \geq 2 \land x = u + 2)$ $\equiv x \geq 4$
- So sp(P, S) is $x \ge 4$

```
Computing sp(P,S): if-then-else
 assert P;
 if b {
       assert P \wedge b;
       s1;
       assert sp(P \land b, s1);
  } else {
       assert P \land !b;
       s2;
       assert sp(P \land !b, s2);
  }
  assert sp(P \land b, s1) \lor sp(P \land !b, s2);
```

Computing sp(P, S): if-then-else

- Suppose $S = if B \{ S' \}$ else $\{ S'' \}$, where B is condition and S, S' are blocks of statements. What is sp(P,S)?
- To execute *S*:
 - Check if B is true, and if so, execute S'
 - If instead B is false, execute S''
- sp(P, S) mimics this!

- Suppose $Q_1 = sp(P \land B, S')$ and $Q_2 = sp(P \land \neg B, S'')$

 $-\operatorname{Then} sp(P,S) = Q_1 \vee Q_2!$

Computing sp(P, S): if-then-else

Using sp To Generate Annotations

- Start from precondition, beginning of code
- Statement-by-statement, apply sp to (current) precondition and statement to generate postcondition for statement
- When you move from one statement to the next, use the postcondition of the previous statement as the precondition for the current one

Weakest Preconditions

- Strongest postconditions start from a precondition *P* and code *S*
- Weakest preconditions start from code S and postcondition Q!
 - If Q is a postcondition (so a proposition in Dafny) and S is code, then P is the weakest precondition for S and Q if and only if:
 - $\{P\} S \{Q\}$ is valid
 - *P* is the "most general" among all preconditions *P*' such that $\{P'\} S \{Q\}$ is valid "Most general" means that for all *P*' such that $\{P'\} S \{Q\}$ is valid, $P' \Rightarrow P$
- Some facts
 - For traditional imperative languages: weakest preconditions always exist!
 - Regardless of form of S and Q, weakest precondition can be written down as a formula
 - Notation: wp(S, Q) used for weakest precondition of S, Q
 - Like sp(P, S), wp(S, Q) can (often) be computed syntactically!

Computing wp(S, Q): Assignment

- Suppose S is x := t. What is wp(S,Q)?
 - For sp we needed to keep track of the old and new values of x
 - If we do the same for wp then we should introduce variable u for the new value of x
 - This would yield: $wp(S,Q) = \exists u. (Q[x \coloneqq u] \land u = t)$
- This can be simplified!
 - Since u = t, $\exists u. (Q[x \coloneqq u] \land u = t) \equiv \exists u. Q[x \coloneqq t]$
 - But now there is no u in $Q[x \coloneqq t]$, and $\exists u$ can be dropped!
 - So $wp(S, Q) = Q[x \coloneqq t]$
 - No quantifier (i.e. $\exists u$) needed!
- Example
 - Suppose S is x := x + 1, Q is $x \le 1$
 - Then $wp(S, Q) = Q[x \coloneqq x + 1] = x + 1 \le 1 \equiv x \le 0$

Computing wp(S, Q): Statement Blocks

- Suppose S is $S_1; S_2; \cdots S_n;$
- wp(S,Q) is computed like sp, but starting at the end of the block and working forward

$$wp(P,S) = P_1, \text{ where:}$$

$$P_n = wp(S_n, Q)$$

$$P_{n-1} = wp(S_{n-1}, P_n)$$

$$\vdots$$

$$P_1 = sp(S_1, P_{n-1})$$

Computing wp(P, S): if-then-else

- Suppose $S = if B \{ S' \}$ else $\{ S'' \}$, where B is condition and S, S' are blocks of statements. What is wp(S,Q)?
 - Suppose we compute $P_1 = wp(S', Q), P_2 = wp(S'', Q)$
 - This gives the preconditions under the assumption that B is true (P_1) and under the assumption that B is false (P_2)
 - $-\operatorname{So} wp(S,P) = (B \Rightarrow P_1) \land (\neg B \Rightarrow P_2)!$

Using wp To Generate Annotations

- Start from postcondition, end of code
- Working backwards, statement-by-statement, apply wp to (current) postcondition and statement to generate precondition for statement
- When you move from backward to the next statement, use the precondition of the just-processed statement as the postcondition for the current one