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method methodName(…) 
  requires <proposition>
  ensures  <proposition>
{
  …
 <imperative code>

  … 
}

A General Pattern

Propositions

Imperative

Functional



• We use preconditions / postconditions to specify desired behavior 
of code
– Precondition:  assumptions for when the code starts executing

– Postcondition:  what must be satisfied when code terminates

• Both preconditions and postconditions will be specified in the 
language of propositions

• This kind of correctness is called partial correctness, as it doesn’t 
require code termination
– Total correctness imposes an extra termination requirement

– We will talk about total correctness later

Formal Specifications
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• Given at the method level

– Precondition:  requires clause(s)

– Postcondition:  ensures clause(s)

• If either type of clause is missing:  associated condition is 
assumed to be “true” (i.e. no restriction)

Formal Specifications in Dafny
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• In forall, exists formulas, Dafny requires a type for x!

• Parentheses also allowed

• Boolean-valued expressions in Dafny programs can also be atomic predicates in formulas

Dafny Formula Notation
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||

&&

!

==>

exists x : T :: 𝜑

forall x : T :: 𝜑



• requires clause is missing (so is assumed to be “true”, meaning all inputs are 
allowed)

• ensures clause states that output is ≤ both x and y

Min
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method Min (x : int, y : int) returns (min : int)
  ensures min <= x && min <= y;

{
  if (x < y) {
    min := x;
  }
  else {
    return y;
  }

}



• The postcondition can actually be more precise!
• When there are two ensures (or requires) clauses they are assumed to 

be conjoined (“and-ed”) together

Min (cont.)
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method Min (x : int, y : int) returns (min : int)
  ensures min <= x && min <= y;
  ensures min == x || min == y;

{
  if (x < y) {
    min := x;
  }
  else {
    min := y;
  }

}



• Traditional (non-Dafny) notation:  𝑃 𝑆 {𝑄}
– 𝑃 is the precondition
– 𝑆 is the code (“statement”)
– 𝑄 is the postcondition
– Often 𝑃 𝑆 {𝑄} is called a Hoare Triple, after Tony Hoare (Turing Award 1980)

• 𝑃 𝑆 {𝑄} is valid if and only if:
for every state for which 𝑃 holds, if we execute statement 𝑆, we terminate in a 
state where 𝑄 holds

• In words:  𝑃 𝑆 {𝑄} is valid if and only if, when 𝑆 is started in a state 
satisfying 𝑃 and 𝑆 terminates, the final state satisfies 𝑄

• Validity of 𝑃 𝑆 {𝑄} = “𝑆 satisfies the precondition / postcondition 
specification corresponding to 𝑃 and 𝑄”

Partial Correctness, Formally
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• What does it mean for a program to “start in a state / 
terminate in a state”?

– Answer:  Semantics of programming languages!

– Pioneered by Dana Scott (Turing Award 1976)

– Other luminaries

• Gordon Plotkin

• Gilles Kahn

– Take CMSC 631!

Partial Correctness (cont.)
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• Goal (imperative languages):  interpret code as transformations from input states 
to result states

• Common approaches (𝑆 is code, Σ is the set of all states)
– “Denotational”:  Define 𝑆 ∈ Σ → Σ (function from states to states)

• Function is usually partial (i.e. not defined for all inputs)
• Sometimes 𝑆 ∈ Σ → 2Σ (i.e. returns sets of states, not single states, due to nondeterminism)

– “Operational (Big-Step)”:  Define relation 𝑆, 𝜎 ⇒ 𝜎′

• 𝜎, 𝜎′ ∈ Σ
• 𝑆, 𝜎 ⇒ 𝜎′ means 𝑆, starting in state 𝜎, can terminate in state 𝜎′

– “Operational (Small-Step)”:  Define relation 𝑆, 𝜎 → ⟨𝑆′, 𝜎′⟩
• 𝜎, 𝜎′ ∈ Σ, 𝑆′ is code
• 𝑆, 𝜎 → ⟨𝑆′, 𝜎′⟩ means 𝑆, starting in state 𝜎, can perform one execution step, with 𝜎′ being the 

new state and 𝑆′ being the remaining code to execute.

Programming Language Semantics
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• Tries to prove validity of Hoare Triples for methods!
• How!

– It constructs annotations of programs
– An annotation puts a precondition in front of every statement and a 

postcondition after every statement
• In Dafny:  this can be done manually with assert statements
• assert statements take a predicate-calculus formula as an argument

– If it succeeds, i.e. if all the Hoare triples embedded in the annotated code are 
valid, the specification holds!

• The annotation method is often called the intermittent invariant method
– Due to Bob Floyd (1967)
– Floyd won Turing Award in 1978

Dafny Verifier
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Manually Annotated Min
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method Min (x : int, y : int) returns (min : int)
  ensures min <= x && min <= y

{
  assert true;
  if (x < y) {
    assert x < y; 
    min := x;
    assert min < y;
  }
  else {
    assert x >= y;
    min := y;
    assert min <= x;
  }
  assert min <= x && min <= y;

}



• Annotation reflects “what you think is true” at the given points 
in code

– If you are right:  this proves precondition / postcondition!

– If you are not right:  annotation is incorrect, and is not a proof

• Dafny verifier:

– Attempts to build annotations automatically

– Tries to check if given annotations are indeed proofs

If it cannot complete check, Dafny verifier complains

More on Annotated Programs
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• Strongest postconditions

• Weakest preconditions

• Loop invariants

How Do You Build Annotations Systematically?

Topic 4:  Specifications 15



• If 𝑃 is a precondition (so, a proposition) and 𝑆 is code, then 𝑄 is the 
strongest postcondition for 𝑃 and 𝑆 if and only if:
– 𝑃 𝑆 {𝑄} is valid

– 𝑄 is the “most precise” among all postconditions 𝑄′ such that 𝑃 𝑆 {𝑄′} is valid
“Most precise” means that if 𝑄′ is such that 𝑃 𝑆 {𝑄′} is valid, then 𝑄 ⇒ 𝑄′

• Some facts
– For traditional imperative languages:  strongest postconditions always exist!

• Regardless of form of 𝑃 and 𝑆, strongest postcondition can be written down as a formula

• Notation:  𝑠𝑝(𝑃, 𝑆) used for strongest postcondition of 𝑃, 𝑆

– 𝑠𝑝(𝑃, 𝑆) can (often) be computed syntactically!

Strongest Postconditions
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Computing 𝑠𝑝(𝑃, 𝑆):  Assignment
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    assert P; 
    x := 1;
    assert Q;

What is the 
strongest Q?



• Suppose 𝑆 is (Dafny) statement x := 1.  What is 𝑠𝑝(𝑃, 𝑆)?

– First guess:  𝑃 ∧ (𝑥 = 1)

– But this doesn’t always work!

• Suppose 𝑃 is 𝑥 ≠ 1

• This proposed definition would make 𝑠𝑝 𝑃, 𝑆 = 𝑥 ≠ 1 ∧ 𝑥 = 1 ≡ false

• 𝑃 𝑆 {𝑠𝑝 𝑃, 𝑆 } is not valid in this case!

• Problem:  

– 𝑃 can mention the variable being assigned to

– 𝑃 might no longer be true after the assignment

Computing 𝑠𝑝(𝑃, 𝑆):  Assignment

Topic 4:  Specifications 18



• Another approach for 𝑠𝑝(𝑃, 𝑆) when 𝑆 is x := 1
– Introduce a new variable 𝑢 (not free in 𝑃) that represents the “old 

value” of x

– Define 𝑠𝑝 𝑃, S = ∃𝑢. (𝑃[𝑥 ≔ 𝑢] ∧ 𝑥 = 1)

• Recall the previous example, where 𝑃 is 𝑥 ≠ 1
– 𝑃[𝑥 ≔ 𝑢] is 𝑢 ≠ 1

– Then 𝑠𝑝(𝑃, 𝑆) is ∃𝑢. (𝑢 ≠ 1 ∧ 𝑥 = 1)

– This works!

– Note that ∃𝑢. 𝑢 ≠ 1 ∧ 𝑥 = 1 can be simplified to 𝑥 = 1 (why?)

Computing 𝑠𝑝 𝑃, 𝑆 : Assignment

Topic 4:  Specifications 19



Computing 𝑠𝑝(𝑃, 𝑆):  Assignment
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assert 𝑃; 
x := t;
assert ∃𝑢. (P x ≔ u ∧ 𝑥 = 𝑡 𝑥 ≔ 𝑢 ;



Suppose 𝑃 is 𝑥 ≥ 1 and 𝑆 is 𝑥 ≔ 𝑥 + 1.

– In this case
𝑠𝑝 𝑃, 𝑆 = ∃𝑢. 𝑃 𝑥 ≔ 𝑢 ∧ 𝑥 = 𝑥 + 1 𝑥 ≔ 𝑢

= ∃𝑢. (𝑢 ≥ 1 ∧ 𝑥 = 𝑢 + 1)

– This can be simplified to 𝑥 ≥ 2!

• Since 𝑥 = 𝑢 + 1, 𝑢 = 𝑥 − 1

• You can replace 𝑢 by 𝑥 − 1 in formula and simplify!
∃𝑢. 𝑢 ≥ 1 ∧ 𝑥 = 𝑢 + 1 ≡ ∃𝑢. 𝑥 − 1 ≥ 1 ∧ 𝑥 = 𝑥 − 1 + 1

≡ 𝑥 ≥ 2 ∧ 𝑥 = 𝑥
≡ 𝑥 ≥ 2

Example

Topic 4:  Specifications 22



Computing 𝑠𝑝(𝑃, 𝑆):  Statement Blocks
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assert 𝑃; 
s1; s2;
assert Q;

What is the 
strongest Q?



• Suppose 𝑆 is 𝑆1; 𝑆2; ⋯𝑆𝑛; (like one would find in if-then-else or 
a loop body).  What is 𝑠𝑝(𝑃, 𝑆)?

• Answer:  chain them together!

That is, 𝑠𝑝 𝑃, 𝑆 = 𝑄𝑛, where:
𝑄1 = 𝑠𝑝 𝑃, 𝑆1
𝑄2 = 𝑠𝑝 𝑄1, 𝑆2

⋮
𝑄𝑛 = 𝑠𝑝(𝑄𝑛−1, 𝑆𝑛)

Computing 𝑠𝑝(𝑃, 𝑆):  Statement Blocks

Topic 4:  Specifications 24



Computing 𝑠𝑝(𝑃, 𝑆):  Statement Blocks
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assert 𝑃; 
s1; 
assert sp(P,s1);
s2;
assert sp(sp(P,s1),s2);



• Suppose 𝑃 is 𝑥 ≥ 1 and 𝑆 = 𝑆1; 𝑆2; , where 𝑆1 is x := x + 1 
and 𝑆2 is x := x + 2.  What is 𝑠𝑝(𝑃, 𝑆)?
𝑄1 = 𝑠𝑝 𝑃, 𝑆1

= ∃𝑢. 𝑢 ≥ 1 ∧ 𝑥 = 𝑢 + 1
≡ 𝑥 ≥ 2

𝑄2 = 𝑠𝑝 𝑄1, 𝑆2
= ∃𝑢. 𝑢 ≥ 2 ∧ 𝑥 = 𝑢 + 2
≡ 𝑥 ≥ 4

• So 𝑠𝑝(𝑃, 𝑆) is 𝑥 ≥ 4

Example

Topic 4:  Specifications 26



Computing 𝑠𝑝(𝑃, 𝑆):  if-then-else
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assert 𝑃; 
if b {
 assert 𝑃 ∧ 𝑏;
 s1;
 assert sp(𝑃 ∧ 𝑏, 𝑠1);
} else {
 assert 𝑃 ∧ ! 𝑏;
 s2;
 assert sp(𝑃 ∧ ! 𝑏, 𝑠2);
}
assert sp 𝑃 ∧ 𝑏, 𝑠1 ∨ sp(𝑃 ∧ ! 𝑏, 𝑠2); 



• Suppose 𝑆 = if 𝐵 { 𝑆′ } else { 𝑆′′ }, where 𝐵 is condition 
and 𝑆, 𝑆′ are blocks of statements.  What is 𝑠𝑝 𝑃, 𝑆 ?

• To execute 𝑆:

– Check if 𝐵 is true, and if so, execute 𝑆′

– If instead 𝐵 is false, execute 𝑆′′

• 𝑠𝑝(𝑃, 𝑆) mimics this!

– Suppose 𝑄1 = 𝑠𝑝(𝑃 ∧ 𝐵, 𝑆′) and 𝑄2 = 𝑠𝑝(𝑃 ∧ ¬𝐵, 𝑆′′)

– Then 𝑠𝑝 𝑃, 𝑆 = 𝑄1 ∨ 𝑄2!

Computing 𝑠𝑝(𝑃, 𝑆):  if-then-else
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Computing 𝑠𝑝(𝑃, 𝑆):  if-then-else
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assert 𝑃; 
if b {
 s1;
} else {
 s2;
}
assert Q;

What is the 
strongest Q?



• Start from precondition, beginning of code

• Statement-by-statement, apply 𝑠𝑝 to (current) precondition 
and statement to generate postcondition for statement

• When you move from one statement to the next, use the 
postcondition of the previous statement as  the precondition 
for the current one

Using 𝑠𝑝 To Generate Annotations
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• Strongest postconditions start from a precondition 𝑃 and code 𝑆
• Weakest preconditions start from code 𝑆 and postcondition 𝑄!

– If 𝑄 is a postcondition (so a proposition in Dafny) and 𝑆 is code, then 𝑃 is the 
weakest precondition for S and 𝑄 if and only if:

– 𝑃 𝑆 {𝑄} is valid
– 𝑃 is the “most general” among all preconditions 𝑃′ such that 𝑃′ 𝑆 {𝑄} is valid

“Most general” means that for all 𝑃′ such that 𝑃′ 𝑆 {𝑄} is valid, 𝑃′ ⇒ 𝑃

• Some facts
– For traditional imperative languages:  weakest preconditions always exist!

• Regardless of form of 𝑆 and 𝑄, weakest precondition can be written down as a formula
• Notation:  𝑤𝑝(𝑆, 𝑄) used for weakest precondition of 𝑆, 𝑄

– Like 𝑠𝑝(𝑃, 𝑆), 𝑤𝑝(𝑆, 𝑄) can (often) be computed syntactically!

Weakest Preconditions

31



• Suppose 𝑆 is x := 𝑡.  What is 𝑤𝑝 𝑆, 𝑄 ?
– For 𝑠𝑝 we needed to keep track of the old and new values of 𝑥
– If we do the same for 𝑤𝑝 then we should introduce variable 𝑢 for the new value of 𝑥
– This would yield:

𝑤𝑝 𝑆, 𝑄 = ∃𝑢. 𝑄 𝑥 ≔ 𝑢 ∧ 𝑢 = 𝑡

• This can be simplified!
– Since 𝑢 = 𝑡, ∃𝑢. 𝑄 𝑥 ≔ 𝑢 ∧ 𝑢 = 𝑡 ≡ ∃𝑢. 𝑄[𝑥 ≔ 𝑡]
– But now there is no 𝑢 in 𝑄[𝑥 ≔ 𝑡], and ∃𝑢 can be dropped!
– So 𝒘𝒑 𝑺,𝑸 = 𝑸[𝒙 ≔ 𝒕]
– No quantifier (i.e. ∃𝑢) needed!

• Example
– Suppose 𝑆 is x := x + 1, 𝑄 is 𝑥 ≤ 1
– Then 𝑤𝑝 𝑆,𝑄 = 𝑄 𝑥 ≔ 𝑥 + 1 = 𝑥 + 1 ≤ 1 ≡ 𝑥 ≤ 0

Computing 𝑤𝑝(𝑆, 𝑄):  Assignment
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• Suppose 𝑆 is 𝑆1; 𝑆2; ⋯𝑆𝑛;

• 𝑤𝑝 𝑆, 𝑄 is computed like 𝑠𝑝, but starting at the end of the 
block and working forward

𝑤𝑝 𝑃, 𝑆 = 𝑃1, where:
𝑃𝑛 = 𝑤𝑝 𝑆𝑛, 𝑄

𝑃𝑛−1 = 𝑤𝑝 𝑆𝑛−1, 𝑃𝑛
⋮

𝑃1 = 𝑠𝑝(𝑆1, 𝑃𝑛−1)

Computing 𝑤𝑝(𝑆, 𝑄):  Statement Blocks
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• Suppose 𝑆 = if 𝐵 { 𝑆′ } else { 𝑆′′ }, where 𝐵 is condition 
and 𝑆, 𝑆′ are blocks of statements.  What is 𝑤𝑝 𝑆, 𝑄 ?

– Suppose we compute 𝑃1 = 𝑤𝑝(𝑆′, 𝑄), 𝑃2 = 𝑤𝑝(𝑆′′, 𝑄)

– This gives the preconditions under the assumption that 𝐵 is true 
(𝑃1)and under the assumption that 𝐵 is false (𝑃2)

– So 𝑤𝑝 𝑆, 𝑃 = 𝐵 ⇒ 𝑃1 ∧ (¬𝐵 ⇒ 𝑃2)!

Computing 𝑤𝑝(𝑃, 𝑆):  if-then-else
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• Start from postcondition, end of code

• Working backwards, statement-by-statement, apply 𝑤𝑝 to 
(current) postcondition and statement to generate 
precondition for statement

• When you move from backward to the next statement, use the 
precondition of the just-processed statement as  the 
postcondition for the current one

Using 𝑤𝑝 To Generate Annotations

35
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