CMSC 433 Spring 2024 5 UNIVERSITY OF
':&J.

Leo Lampropoulos MAIWLAND

Program Specifications with Dafny

http://www.mse.umd.edu/logos/images/UMD-logo.jpg

A General Pattern

method methodName
require
ensures

Propositions

{ Functional

Imperative

Formal Specifications

* We use preconditions / postconditions to specify desired behavior
of code

— Precondition: assumptions for when the code starts executing
— Postcondition: what must be satisfied when code terminates

* Both preconditions and postconditions will be specified in the
language of propositions

* This kind of correctness is called partial correctness, as it doesn’t
require code termination

— Total correctness imposes an extra termination requirement
— We will talk about total correctness later

Formal Specifications in Dafny

* Given at the method level
— Precondition: requires clause(s)
— Postcondition: ensures clause(s)

* |f either type of clause is missing: associated condition is
assumed to be “true” (i.e. no restriction)

Dafny Formula Notation

||
&&
!
==>
exists x : T :: @
forall x : T :: @
 Inforall, exists formulas, Dafny requires a type for x!

* Parentheses also allowed
* Boolean-valued expressions in Dafny programs can also be atomic predicates in formulas

Min

method Min (x : int, y : int) returns (min : int)
ensures min <= x && min <= vy;

{
if (x <y) {
min := X;
}
else {
return y;
}
}

* requires clause is missing (so is assumed to be “true”, meaning all inputs are
allowed)

* ensures clause states that outputis < bothxandy

Min (cont.)

method Min (x : int
ensures min <

, ¥ ¢ int) returns (min : int)
X && min <= vy;
x| ;

ensures min min == vy;
{
if (x <y) {
min := X;
}
else {
min := vy;
}
}

* The postcondition can actually be more precise!

 When there are two ensures (or requires) clauses they are assumed to
be conjoined (“and-ed”) together

Partial Correctness, Formally

Traditional (non-Dafny) notation: {P} S {Q}
— P is the precondition
— Sis the code (“statement”)

— (@ is the postcondition »
— Often {P} S {Q} is called a Hoare Triple, after Tony Hoare (Turing Award 1980)

{P} S {Q}is valid if and only if:

for every state for which P holds, if we execute statement S, we terminate in a
state where Q holds

In words: {P} S {Q} is valid if and only if, when S is started in a state
satisfying P and S terminates, the final state satisfies Q

Validity of {P} § {Q} = “S satisfies the precondition / postcondition
specification corresponding to P and Q”

Partial Correctness (cont.)

 What does it mean for a program to “start in a state /
terminate in a state”?

— Answer: Semantics of programming languages!
— Pioneered by Dana Scott (Turing Award 1976)

— Other luminaries
e Gordon Plotkin
e Gilles Kahn

— Take CMSC 631!

Programming Language Semantics

* Goal (imperative languages): interpret code as transformations from input states
to result states

« Common approaches (S is code, X is the set of all states)

— “Denotational”: Define [S] € Z — X (function from states to states)

* Function is usually partial (i.e. not defined for all inputs)

« Sometimes [S] € X = 2% (i.e. returns sets of states, not single states, due to nondeterminism)
— “Operational (Big-Step)”: Define relation (S, o) = o’

e 0,0 €EX

* (S,0) = ¢’ means S, starting in state o, can terminate in state o’
— “Operational (Small-Step)”: Define relation (S,a) — (S',d")

e 0,0’ €%,5" iscode

* (S,0) - (S',0') means §, starting in state g, can perform one execution step, with ' being the
new state and S’ being the remaining code to execute.

10

Dafny Verifier

* Tries to prove validity of Hoare Triples for methods!

e How!
— It constructs annotations of programs

— An annotation puts a precondition in front of every statement and a

postcondition after every statement
* In Dafny: this can be done manually with assert statements
e assert statements take a predicate-calculus formula as an argument

— |If it succeeds, i.e. if all the Hoare triples embedded in the annotated code are
valid, the specification holds!

e The annotation method is often called the intermittent invariant method

— Due to Bob Floyd (1967)
— Floyd won Turing Award in 1978

12

method Min (x :

{

Manually Annotated Min

int, y : int) returns (min :

ensures min <= x && min <=y

assert true;

if (x < y)
assert
min :=
assert

}

else {
assert
min :=
assert

}

assert min

X < VY;
X5
min < vy;

X >=Y,;

Y
min <= X;

<= X && min <= vy;

int)

13

More on Annotated Programs

* Annotation reflects “what you think is true” at the given points
in code

— If you are right: this proves precondition / postcondition!
— If you are not right: annotation is incorrect, and is not a proof
* Dafny verifier:

— Attempts to build annotations automatically

— Tries to check if given annotations are indeed proofs
If it cannot complete check, Dafny verifier complains

14

How Do You Build Annotations Systematically?

e Strongest postconditions
* Weakest preconditions

* Loop invariants

Topic 4: Specifications

15

Strongest Postconditions

e If P is a precondition (so, a proposition) and S is code, then Q is the
strongest postcondition for P and S if and only if:
— {P} S {Q} isvalid
— Q is the “most precise” among all postconditions Q' such that {P} S {Q'} is valid
“Most precise” means that if Q" is such that {P} S {Q'} is valid, then Q = Q'
 Some facts

— For traditional imperative languages: strongest postconditions always exist!
* Regardless of form of P and S, strongest postcondition can be written down as a formula
* Notation: sp(P,S) used for strongest postcondition of P, §

— sp(P, S) can (often) be computed syntactically!

16

Computing sp(P,S): Assignment

What is the

strongest Q?

assert P;
X = 1;
assert Q; °

17

Computing sp(P,S): Assignment

e Suppose S is (Dafny) statement X 1. Whatis sp(P,S)?
— First guess: PA (x = 1)
— But this doesn’t always work!
 Suppose Pisx # 1
* This proposed definition would make sp(P,S) = (x # 1 Ax = 1) = false
« {P}S {sp(P,S)}is not valid in this case!
* Problem:
— P can mention the variable being assigned to

— P might no longer be true after the assignment

Topic 4: Specifications

18

Computing sp(P,S) : Assighment

* Another approach for sp(P,S) whenSisx := 1

— Introduce a new variable u (not free in P) that represents the “old
value” of x

— Define sp(P,S) = u. (P[x ==u] Ax = 1)
* Recall the previous example, where Pisx # 1
—Plx =u]isu#1
—Thensp(P,S)isau.(u#1Ax=1)
— This works!
— Note that Ju. (u # 1 A x = 1) can be simplified to x = 1 (why?)

Topic 4: Specifications

19

Computing sp(P,S): Assignment

assert P;
X = 1t;
assert Ju.(P[x:=u] Ax = t[x = u];

Example

Suppose Pisx =1andSisx =x + 1.

— In this case
sp(P,S) =3u.(Plx =u]Ax=(x+1)|x:=ul])
=Ju.(u=z1Ax=u+1)

— This can be simplified to x = 2!
e Sincex=u+l,u=x-1

* You can replace u by x — 1 in formula and simplify!
Qu.(u>1Ax=u+1)=3u(x—-1>21Ax=x—-1+1)
=(x=>2Ax=x)
=x=2

Topic 4: Specifications

22

Computing sp(P,S): Statement Blocks

What is the

?
assert P; strongest Q:
sl; s2; O
assert Q;°

23

Computing sp(P,S): Statement Blocks

* Suppose Sis S1;S,; -+ S,; (like one would find in if-then-else or
a loop body). What is sp(P,S)?
 Answer: chain them together!

Thatis, sp(P,S) = Q,,, where:

Q, = sp(P,Sy)
Q> = sp(Q1,S2)

Qn = Sp (Qn—lr Sn)

Computing sp(P,S): Statement Blocks

assert P;

sl;

assert sp(P,sl);

S2;

assert sp(sp(P,sl1),s2);

Example

* SupposePisx =1and$§ = 54;5,;,whereS; isx :

and S, isx := x + 2. Whatis sp(P,S)?
Q1 = sp(P,S1)

Ju.(u=>1Ax=u+1)

X = 2

sp(Q4,S2)
Ju.(u=2Ax=u++2)
x =4

* Sosp(P,S)isx =4

Q>

Topic 4: Specifications

26

Computing sp(P, S): if-then-else

assert P;
if b {

assert PADb;

sl;

assert sp(PAb,sl);
} else {

assert PA!Db;

S2;

assert sp(PA!b,s2);

}
assert sp(PAb,s1)Vsp(PA!b,s2);

27

Computing sp(P, S): if-then-else

* Suppose S =if B {S } else {S" }, where B is condition
and S, S’ are blocks of statements. What is sp(P,S)?
* To execute §:
— Check if B is true, and if so, execute S’
— If instead B is false, execute S’
* sp(P,S) mimics this!
— Suppose Q; = sp(PAB,S")and Q, = sp(P A=B,S"")
—Then sp(P,S) = Q. V Q,!

28

Computing sp(P, S): if-then-else

assert P;

if b {
sl;

} else { What is the
S2; strongest Q?

¥

assert Q;°

29

Using sp To Generate Annotations

e Start from precondition, beginning of code

* Statement-by-statement, apply sp to (current) precondition
and statement to generate postcondition for statement

* When you move from one statement to the next, use the
postcondition of the previous statement as the precondition
for the current one

Weakest Preconditions

* Strongest postconditions start from a precondition P and code S

* Weakest preconditions start from code S and postcondition Q!

— If Q is a postcondition (so a proposition in Dafny) and S is code, then P is the
weakest precondition for S and Q if and only if:

— {P} S {Q} is valid
— P is the “most general” among all preconditions P’ such that {P'} S {Q} is valid
“Most general” means that for all P’ such that {P'} S {Q} is valid, P' = P
* Some facts

— For traditional imperative languages: weakest preconditions always exist!
* Regardless of form of S and @, weakest precondition can be written down as a formula
* Notation: wp(S, Q) used for weakest precondition of S, Q

— Like sp(P, S), wp(S, Q) can (often) be computed syntactically!

31

Computing wp (S, Q): Assignment

* SupposeSisx := t. Whatiswp(S,Q)?
— For sp we needed to keep track of the old and new values of x
— If we do the same for wp then we should introduce variable u for the new value of x
— This would yield:
wp(S,Q) =3u. (Q[x:==u]J]Au=t)
* This can be simplified!
— Sinceu =t, Ju. (Q[x ==u]Au=1t) = Ju.Q[x = t]
— But now thereisnou in Q[x := t], and 3u can be dropped!
— Sowp(S,Q) = Q[x = t]
— No quantifier (i.e. 3u) needed!
e Example
— Suppose Sisx = x + 1,Qisx <1
— Thenwp(5,Q) =0Q[x =x+1]=x+1<1=x<0

32

Computing wp (S, Q): Statement Blocks

* Suppose Sis S1;5,; -+ Sy;
* wp(S, Q) is computed like sp, but starting at the end of the
block and working forward

wp(P,S) = P;, where:
PTL = Wp(Sn; Q)
Pp_1 = Wp(Sn—l»Pn)

Py = sp(S1, Pn-1)

Computing wp(P, S): if-then-else

* Suppose S =if B {S } else {S" }, where B is condition
and S, S’ are blocks of statements. What is wp(S, Q)?
— Suppose we compute P; = wp(S',0Q), P, = wp(S", Q)

— This gives the preconditions under the assumption that B is true
(P;)and under the assumption that B is false (P,)

—Sowp(S,P) =(B = P;))AN(=B = P,)!

34

Using wp To Generate Annotations

e Start from postcondition, end of code

* Working backwards, statement-by-statement, apply wp to
(current) postcondition and statement to generate
precondition for statement

* When you move from backward to the next statement, use the
precondition of the just-processed statement as the
postcondition for the current one

	Slide 0: Program Specifications with Dafny
	Slide 1: A General Pattern
	Slide 2: Formal Specifications
	Slide 3: Formal Specifications in Dafny
	Slide 4: Dafny Formula Notation
	Slide 6: Min
	Slide 7: Min (cont.)
	Slide 8: Partial Correctness, Formally
	Slide 9: Partial Correctness (cont.)
	Slide 10: Programming Language Semantics
	Slide 12: Dafny Verifier
	Slide 13: Manually Annotated Min
	Slide 14: More on Annotated Programs
	Slide 15: How Do You Build Annotations Systematically?
	Slide 16: Strongest Postconditions
	Slide 17: Computing s p open paren cap P ,cap S close paren : Assignment
	Slide 18: Computing s p open paren cap P ,cap S close paren : Assignment
	Slide 19: Computing s p open paren cap P ,cap S , close paren : Assignment
	Slide 20: Computing s p open paren cap P ,cap S close paren : Assignment
	Slide 22: Example
	Slide 23: Computing s p open paren cap P ,cap S close paren : Statement Blocks
	Slide 24: Computing s p open paren cap P ,cap S close paren : Statement Blocks
	Slide 25: Computing s p open paren cap P ,cap S close paren : Statement Blocks
	Slide 26: Example
	Slide 27: Computing s p open paren cap P ,cap S close paren : if-then-else
	Slide 28: Computing s p open paren cap P ,cap S close paren : if-then-else
	Slide 29: Computing s p open paren cap P ,cap S close paren : if-then-else
	Slide 30: Using s p To Generate Annotations
	Slide 31: Weakest Preconditions
	Slide 32: Computing w p open paren cap S ,cap Q close paren : Assignment
	Slide 33: Computing w p open paren cap S ,cap Q close paren : Statement Blocks
	Slide 34: Computing w p open paren cap P ,cap S close paren : if-then-else
	Slide 35: Using w p To Generate Annotations

