
CMSC 330
Organization of Programming Languages

OCaml
Higher Order Functions

1
CMSC 330 – Spring 2024

2

Anonymous Functions

Use fun to make a function with no name

(fun x -> x + 3) 5 fun x -> x + 3

Parameter Body
(in which parameter x
 is bound)

= 8

Anonymous Functions

Syntax
• fun x1 … xn -> e

Evaluation
• An anonymous function is an expression
• In fact, it is a value.

Type checking
• (fun x1 … xn -> e) : (t1 -> … -> tn -> u)

when e : u under assumptions x1 : t1, …, xn : tn.
Ø (Same rule as let f x1 … xn = e)

3

A. Error
B. 2
C. 1
D. 0

4

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun z -> z-1) y

A. Error
B. 2
C. 1
D. 0

5

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun z -> z-1) y

A. Type error
B. int
C. int -> int -> int
D. 'a -> 'b -> 'a

6

(fun x y -> x) 2 3

Quiz 2: What is this expression’s type ?

A. Type error
B. int
C. int -> int -> int
D. 'a -> 'b -> 'a

7

(fun x y -> x) 2 3

Quiz 2: What is this expression’s type ?

8

Functions and Binding

Functions are first-class, so you can bind them to other
names as you like

let f x = x + 3;;
let g = f;;
g 5

= 8

9

Example Shorthands
let for functions is a syntactic shorthand
let f x = body is semantically equivalent to
let f = fun x -> body

let next x = x + 1
• Short for let next = fun x -> x + 1

let plus x y = x + y
• Short for let plus = fun x y -> x + y

A. 0
B. 1
C. 2
D. Error

10

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in
let g = f in
let h = fun y -> g (y+1) in
h 1

A. 0
B. 1
C. 2
D. Error

11

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in
let g = f in
let h = fun y -> g (y+1)
h 1

12

Nested Functions
(* Filter the odd numbers from a list *)
let filter lst =
let rec aux l =

match l with
|[] -> []
|h::t-> if h mod 2 <> 0 then h::aux t
else aux t

in
aux lst

filter [1;2;3;4;5;6] (* int list = [1; 3; 5] *)

13

Passing Functions as Arguments
You can pass functions as arguments

let plus3 x = x + 3 (* int -> int *)

let twice f z = f (f z)
(* ('a->'a) -> 'a -> 'a *)

twice plus3 5 = 11

