CMSC 330
Organization of Programming Languages

OCaml
Higher Order Functions

CMSC 330 — Spring 2024



Anonymous Functions

» Use fun to make a function with no name

Parameter Body
\\\\\\‘ﬁs (in which parameter x
(fun x -> x + 3) 5 S is bound)

fun x —>|x + 3

I
0o



Anonymous Functions

» Syntax

e fun x1 .. xn -> e

» Evaluation

* An anonymous function is an expression
e |n fact, it is a value.

» Type checking
® (fun x1..xn -> e):(tl ->..-> tn -> u)

when e: u under assumptions x1: t1, .., xn: tn.
> (Sameruleas let f x1 .. xn = e)



Quiz 1: What does this evaluate to?

let vy = (fun x -> x+1) 2 in
(fun z -> z-1) y

. Error
.2

.1
. 0

O QO w >



Quiz 1: What does this evaluate to?

let vy = (fun x -> x+1) 2 in
(fun z -> z-1) y

. Error
.2

.1
. 0

O Q w >



Quiz 2: What is this expression’s type ?

(fun x y -> x) 2 3

Type error

. int

. int -> int -> int
.'a ->'b -> 'a

o0 WX



Quiz 2: What is this expression’s type ?

(fun x y -> x) 2 3

Type error

. int

. int -> int -> int
.'a ->'b -> 'a

o0 w>



Functions and Binding

» Functions are first-class, so you can bind them to other
names as you like



Example Shorthands

» let for functions is a syntactic shorthand
let £ x = body is semantically equivalent to
let £

fun x -> Dbody

» let next x = x + 1
e Shortfor let next = fun x -> x + 1

» let plus x y = x + vy
e Shortforlet plus = fun x y -> x + y



Quiz 3: What does this evaluate to?

let £ = fun x -> 0 in

let g = £ in

let h = fun y -> g (y+1) in
h 1

10



Quiz 3: What does this evaluate to?

let £ = fun x -> 0 in
let g = £ in

let h = fun y -> g (y+1)
h 1

11



Nested Functions

(* Filter the odd numbers from a list ¥*)

let filter 1lst =
let rec aux 1 =
match 1 with

| [1 -> [1

|lh::t-> if h mod 2 <> 0 then h::aux t

else aux t
in

aux 1lst

filter [1;2;3;4;5;6]

(* int list

[1;

3; 5] *)

12



Passing Functions as Arguments

You can pass functions as arguments

let plus3 x = x + 3 (* int -> int ¥*)

let twice £ z = £ (f z)
(* ('a->'a) -> 'a -> 'a ¥%)

twice plus3 5 = 11

13



