CMSC 330: Organization of Programming
Languages

Operational Semantics

CMSC 330 Spring 2024

Formal Semantics of a Prog. Lang.

» Mathematical description of the meaning of programs
written in that language
* What a program computes, and what it does

w1427 Plus (Int 1 , Int 2)
Parse

Concrete Abstract

Syntax Syntax

» What does Plus (Int 1, Int 2) mean?

CMSC 330 Spring 2024 2

Operational semantics

» Define how programs execute
* Often on an abstract machine (mathematical model of computer)
* Analogous to interpretation

» We will define an operational semantics for Micro-Ocaml
* And develop an interpreter for it, along the way

» Approach: use rules to define a judgment

e=->v

CMSC 330 Spring 2024

Micro-OCaml Expression Grammar

e.=x|n|le+e|let x = el in e2

Corresponding AST:

type id = string

type exp =
| Ident of id (* x *)
| Num of int (* n *)
| Plus of exp * exp (* ete *)
|

Let of id * exp * exp (* let x=el in e2 *)

CMSC 330 Spring 2024

Defining the Semantics

» Use rules to define judgmente = v
» Inference Rules

H, H, ... H Vx(Man(x)—)Mortal(x))

C Man (Socrates)
Mortal (Socrates)

HiAH,A...H, = C

CMSC 330 Spring 2024

Rules are Lego Blocks

2XP—-=0.2mm
= 15.8 mm

CMSC 330 Spring 2024

Rules of Inference: Num and Sum

match e with

| Num n -> n

n=n | Plus (el,e2) ->
let nl = eval el in
let n2 = eval e2 in
let n3 = nl + n2 in
el>nl e2=>n2 n3isnl+n2 n3

el + e2=>n3

CMSC 330 Spring 2024 7

Rules of Inference: Let

el > vl e2{vl/x} > v2
let x

el in e2 > v2

match e with
| Let (x,el,e2) ->
let vl = eval el in
let e2’ = subst vl x e2 in
let v2 = eval e2’
in v2

CMSC 330 Spring 2024

Derivations

» When we apply rules to an expression in succession, we
produce a derivation
* It's a kind of tree, rooted at the conclusion

» Produce a derivation by goal-directed search

* Pick a rule that could prove the goal
* Then repeatedly apply rules on the corresponding hypotheses

> Goal: Show that let x = 4 in x+3 = 7

CMSC 330 Spring 2024

Derivations

el > nl

e2=>n2 n3isnl+n2

n-n

el > vl

e2{vl/x} > v2

el +e2=>n3

Goal: show that

let x =

CMSC 330 Spring 2024

el in e2 > v2

let x = 4 in x+3 = 7

4>4 3=>3 7Iis4+3

4 = 4

443 => 7

let x = 4

in x+3 =7

10

Quiz 1

What is derivation of the following judgment?

2 + (3 + 8) =13

2 + (3 +8) = 13

(b)

8=>8
3=>3
11 is 3+8

2 + (3 + 8) > 13

2 + (3 +8) => 13

CMSC 330 Spring 2024

11

Quiz 1

What is derivation of the following judgment?

2 + (3 + 8) =13

2 + (3 +8) = 13

(b)

8=>8
3=>3
11 is 3+8

2 + (3 + 8) > 13

2 + (3 +8) => 13

CMSC 330 Spring 2024

12

Definitional Interpreter

» The style of rules lends itself directly to the implementation of

an interpreter as a recursive function

let rec eval (e:exp) :value
match e with
Ident x -> (* no rule ¥*)
failwith “no wvalue”
| Num n -> n
| Plus (el,e2) ->
let nl = eval el in
let n2 = eval e2 in
let n3 = nl+n2 in
n3
| Let (x,el,e2) ->
let vl = eval el in
let e2’ = subst vl x e2 in
let v2 = eval e2’ in v2

n=n

el > nl e2=>n2 n3isnl+n2
el +e2=>n3

el > vl e2{vl/x} > v2

CMSC 330 Spring 2024

let x = el in e2 > v2

13

Derivations = Interpreter Call Trees

4>4 3=>3 7Iis4+3

4 -4 443 => 7
let x = 4 in x+3=> 7

Has the same shape as the recursive call tree of the interpreter:

eval Num 4 >4 eval Num 3= 3 7is 4+3

eval (subst 4 “x”
eval Num 4 > 4 Plus (Ident (“x”) ,Num 3)) => 7

eval Let (“x”,Num 4,Plus(Ident(“x”),Num 3)) > 7/

CMSC 330 Spring 2024

14

Semantics Defines Program Meaning

» e > v holds if and only if a proofcan be built

* Proofs are derivations: axioms at the top, then rules whose
hypotheses have been proved to the bottom

* No proof means there exists no v for which e = v

» Proofs can be constructed bottom-up
* |In a goal-directed fashion
» Thus, functionevale={v|e=> v}
* Determinism of semantics implies at most one element for any e

» S0: Expression e means v

CMSC 330 Spring 2024

15

Environment-style Semantics

» So far, semantics used substitution to handle variables

* As we evaluate, we replace all occurrences of a variable x with
values it is bound to

» An alternative semantics, closer to a real implementation,
Is to use an environment

* As we evaluate, we maintain an explicit map from variables to
values, and look up variables as we see them

CMSC 330 Spring 2024 16

Environments

» Mathematically, an environment is a partial function from

identifiers to values

* If Ais an environment, and x is an identifier, then A(x) can either be
» a value v (intuition: the value of the variable stored on the stack)
» undefined (intuition: the variable has not been declared)

» An environment can visualized as a table

e IfAIs
Id

Val

0
2

* then A(x) is 0, A(y) is 2, and A(z) is undefined

CMSC 330 Spring 2024

17

Notation, Operations on Environments

» ¢ is the empty environment

» A,x.vis the environment that extends A with a mapping
from xto v
* Sometimes just write x:v instead of *,x:v for brevity

» Lookup A(x) is defined as follows

*(x) = undefined
[v fx=y
A yv)(x)= 1 Alx) if x <>y and A(x) defined

undefined otherwise

CMSC 330 Spring 2024 18

Definitional Interpreter: Environments

type env = (id * value) list
let extend env x v = (x,V) ::env

let rec lookup env x =
match env with
[] -> failwith “undefined”
| (y,v)::env’ ->
if x = y then v
else lookup env’ x

An environment is just a list of mappings,
which are just pairs of variable to value
- called an association list

CMSC 330 Spring 2024

Semantics with Environments

» The environment semantics changes the judgment
e->v
to be
Ales v

where A is an environment
* |dea: A is used to give values to the identifiers in e

CMSC 330 Spring 2024

20

Environment-style Rules

Look up
A(x)=v variable x in

environment A
A x> v A:n=>n

’/\ Extend
Aielo>vl Ax:vl, e2>v2 er'1V|ronme'ntA
with mapping

A;let x = el in e2 > v2 from xto v1

Aiel>nl A;e2=>n2 n3isnl+n2
A el+e2>n3

CMSC 330 Spring 2024

Definitional Interpreter: Evaluation

CMSC 330 Spring 2024

let rec eval env e =
match e with
Ident x -> lookup env x

| Num n -> n

| Plus (el,e2) ->

let nl =
let n2 =
let n3 =
n3

| Let (x,el,

let vl =
let env’
let v2 =

eval env el in
eval env e2 in
nl+n2 in

e2) ->

eval env el in

= extend env x vl in
eval env’ e2 in v2

22

Quiz 2

What is a derivation of the following judgment?
e; let x=3 in x+2 > 5

x=>3 2=>2 5is 3+2

)
:2; x>3 x:2; 222 5is 342

e; let %x=3 in x+2 => 5

CMSC 330 Spring 2024

Quiz 2

What is a derivation of the following judgment?
e; let x=3 in x+2 = 5

C

x>3 232 5is3+2) _
:2; x23 x:2; 222 5i8 342 ----

e; let %x=3 in x+2 => 5

CMSC 330 Spring 2024 24

Adding Conditionals to Micro-OCaml

e = x|v|e + e|let x = e in e
|eq0 e |if e then eelse e

v.=n| true | false

» In terms of interpreter definitions:

type exp = type value =
| Val of wvalue Int of int
| ... (* as before *) | Bool of bool
| Eq0 of exp

| If of exp * exp * exp

CMSC 330 Spring 2024 25

Rules for EQO and Booleans

A:e=>0

A: true = true

A; eq0 e = true

Ale>v v#0

CMSC 330 Spring 2024

A: false = false

A; eq0 e = false

26

Rules for Conditionals

Aiel>true A e2>v
A;if el then e2elsee3 > v

A; el > false A, e3>v
A;if el then e2elsee3 > v

» Notice that only one branch is evaluated

CMSC 330 Spring 2024 27

Quiz 3

What is the derivation of the following judgment?
°; 1f eq0 3-2 then 5 else 10=>10

; 323 o 22

e; if eq0 3-2 then 5 else 10 = 10

(b)
3=>3
3-2is1

2>2

if eq0 3-2 then 5 else 10=>10

*; if eq0 3-2 then 5 else 10 > 10

CMSC 330 Spring 2024

28

Quiz 3

What is the derivation of the following judgment?
°; 1f eq0 3-2 then 5 else 10=>10

; 323 o 22

e; if eq0 3-2 then 5 else 10 = 10

(b)
3=>3
3-2is1

2>2

if eq0 3-2 then 5 else 10=>10

; if eq0 3-2 then 5 else 10 > 10

CMSC 330 Spring 2024

29

Updating the Interpreter

CMSC 330 Spring 2024

let rec eval env e =

match e with
Ident x -> lookup env x

| Val v -> v

| Plus (el,e2) ->
let Int nl = eval env el in
let Int n2 = eval env e2 in
let n3 = nl+n2 in

Int n3
| Let (x,el,e2) ->
let vl = eval env el in
let env’ = extend env x vl in
let v2 = eval env’ e2 in v2
| Eq0 el ->

let Int n = eval env el in

if n=0 then Bool true else Bool false
| If (el,e2,e3) ->

let Bool b = eval env el in

if b then eval env e2

else eval env e3

30

Adding Closures to Micro-OCaml

e = x|v|e + e|let x = e in e
|eq0 e |if e then eelse e

|ee| funx -> e |
’/\ Environment

v.=n| true| false| (A,Ax.e) Code

(id and exp)
» In terms of interpreter definitions:

type exp = type value =
| Val of value Int of int
| If of exp * exp * exp | Bool of bool
(* as before *) | Closure of env * id * exp
| Call of exp * exp
| Fun of id * exp
CMSC 330 Spring 2024 31

Rule for Closures: Lexical/Static Scoping

A; fun x -> e = (A Ax. e)

A;el=> (A,Ax.e) A;e2>vl Ax:vi,e o>v
Aiel e2 o> v

» Notice
* Creating a closure captures the current environment A

* A call to a function

» evaluates the body of the closure’s code e with function closure’s
environment A’ extended with parameter x bound to argument v1

CMSC 330 Spring 2024 32

Rule for Closures: Dynamic Scoping

A; fun x->e = (*Ax.e)

A el= (*,Ax.e) A;e2>vl Ax:vi,e o> v
Aiel e2 o> v

» Notice
* Creating a closure ignores the current environment A

* A call to a function

» evaluates the body of the closure’s code e with the current environment A
extended with parameter x bound to argument v1

CMSC 330 Spring 2024 33

Scaling up

» Operational semantics can handle full languages

* With records, recursive variant types, objects, first-class
functions, and more

» Provides a concise notation for explaining what a
language does. Clearly shows:

* Evaluation order

* Call-by-value vs. call-by-name

* Static scoping vs. dynamic scoping

* ... We may look at more of these later

CMSC 330 Spring 2024

34

Scaling up: Lego City

CMSC 330 Spring 2024

35

