
CMSC 330: Organization of Programming
Languages

OCaml Imperative Programming

1

CMSC330 Spring 2024

So Far, Only Functional Programming

• We haven’t given you any way so far to change something
in memory
• All you can do is create new values from old

• This makes programming easier since it supports
mathematical (i.e., functional) reasoning
• Don’t care whether data is shared in memory

Ø Aliasing is irrelevant
• Calling a function f with the same argument always produces the

same result
Ø For all x and y, we have f x = f y when x = y

2

Imperative OCaml

• Sometimes it is useful for values to change
• Call a function that returns an incremented counter
• Store aggregations in efficient hash tables

• OCaml variables are immutable, but

• OCaml has references, fields, and arrays that are actually
mutable
• I.e., they can change

3

References
• 'a ref: Pointer to a mutable value of type 'a
• There are three basic operations on references:

 ref : 'a -> 'a ref

ØAllocate a reference
 ! : 'a ref -> 'a

ØRead the value stored in reference
 := : 'a ref -> 'a -> unit

Change the value stored in reference
• Binding variable x to a reference is immutable

• The contents of the reference x points to may change

4

5

References Usage
Example:
let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

z 3

y

x

contents =

3

6

References Usage
Example:
let z = 3;;
val z : int = 3

let x = ref z;;
val x : int ref = {contents = 3}

let y = x;;
val y : int ref = {contents = 3}

x := 4;;
- : unit = ()

z 3

y

x

contents =

3
contents =

4

7

References Usage
Example:
let z = 3;;

let x = ref z;;

let y = x;;

x := 4;;
!y;;
- : int = 4

z 3

y

x

contents =

3
contents =

4

Aliasing
• Reconsider our example

let z = 3;;
let x = ref z;;
let y = x;;
x := 4;;

Here, variables y and x are aliases:
• In let y = x, variable x evaluates to a location, and y is

bound to the same location
• So, changing the contents of that location will cause both !x and
!y to change

8

z 3

y

x

contents =

3
contents =

4

Quiz 1: What is the value w?

let x = ref 5 in
let y = ref 7 in
let z = y in
let _ = y := 3 in
let w = !y + !z in
w

9

A. 12
B. 6
C. 10
D. 8

Quiz 1: What is the value w?

let x = ref 5 in
let y = ref 7 in
let z = y in
let _ = y := 3 in
let w = !y + !z in
w

10

A. 12
B. 6
C. 10
D. 8

x 5
y 7 3
z

!y + !z = 3 + 3 = 6

Quiz 1a: What is the value w?

let x = ref 5 in
let y = ref 7 in
let z = !y in
let _ = y := 4 in
let w = !y + z in
w

11

A. 12
B. 6
C. 9
D. 11

Quiz 1a: What is the value w?

let x = ref 5 in
let y = ref 7 in
let z = !y in
let _ = y := 4 in
let w = !y + z in
w

12

A. 12
B. 6
C. 9
D. 11

x 5
y 7 4

z=7

!y + z = 4 + 7 = 11

References: Syntax and Semantics

• Syntax: ref e

• Evaluation
• Evaluate e to a value v
• Allocate a new location loc in memory to hold v
• Store v in contents of memory at loc
• Return loc (which is itself a value)

• Type checking
• (ref e) : t ref
• if e : t

13

References: Syntax and Semantics

• Syntax: e1 := e2

• Evaluation
• Evaluate e2 to a value v2
• Evaluate e1 to a location loc
• Store v2 in contents of memory at loc
• Return ()

• Type checking
• (e1 := e2) : unit
• if e1 : t ref and e2 : t

14

References: Syntax and Semantics

• Syntax: !e
• This is not negation. Operator ! is like operator * in C

• Evaluation
• Evaluate e to a location loc
• Return contents v of memory at loc

• Type checking
• !e : t
• if e : t ref

15

Sequences: Syntax and Semantics

• Syntax: e1; e2
• e1; e2 is the same as let () = e1 in e2

• Evaluation
• Evaluate e1 to a value v1
• Evaluate e2 to a value v2
• Return v2
• Throws away v1 – so e1 is useful only if it has side effects, e.g., if it

modifies a reference’s contents or accesses a file

• Type checking
• e1;e2 : t
• if e1 : unit and e2 : t

16

;; versus ;

• ;; ends an expression in the top-level of OCaml
• Use it to say: “Give me the value of this expression”
• Not used in the body of a function
• Not needed after each function definition

Ø Though for now it won’t hurt if used there

• e1; e2 evaluates e1 and then e2, and returns e2
 let print_both (s, t) = print_string s; print_string t;

 "Printed s and t"

• notice no ; at end − it’s a separator, not a terminator
17

18

Grouping Sequences

• If you’re not sure about the scoping rules, use begin...end,
or parentheses, to group together statements with
semicolons

let x = ref 0
let f () =
 begin
 print_string "hello";
 x := !x + 1
 end

let x = ref 0
let f () =
 (
 print_string "hello";
 x := !x + 1
)

Implement a Counter

19

let counter = ref 0 ;;
 val counter : int ref = { contents=0 }

let next () =
 counter := !counter + 1; !counter ;;

val next : unit -> int = <fun>

 # next ();;
- : int = 1

 # next ();;
- : int = 2

20

Hide the Reference

let counter = ref 0 ;;
val counter : int ref = { contents=0 }

let next =
 fun () ->
 counter := !counter + 1; !counter ;;

let next =
 let counter = ref 0 in
 fun () ->
 counter := !counter + 1; !counter ;;

val next : unit -> int = <fun>

next ();;
- : int = 1

next ();;
- : int = 2

21

Hide the Reference, Visualized

let next =
 let cnt = ref 0 in
 fun () ->
 cnt := !cnt + 1; !cnt

let next =

contents =

0

fun () ->
 cnt := !cnt + 1; !cnt cnt

a closure

22

let next =
 fun () ->
 let counter = ref 0 in
 counter := !counter + 1;
 !counter

A. It returns a boolean, not an integer
B. It returns the same integer every time
C. It returns a reference to an integer instead of an integer
D. Nothing is wrong

Quiz 2: What is wrong with the counter?

23

Quiz 2: What is wrong with the counter?

let next =
 fun () ->
 let counter = ref 0 in
 counter := !counter + 1;
 !counter

A. It returns a boolean, not an integer
B. It returns the same integer every time
C. It returns a reference to an integer instead of an integer
D. Nothing is wrong

24

The Trade-Off Of Side Effects

• Side effects are necessary
• That’s usually why we run software! We want something to

happen that we can observe

• They also make reasoning harder
• Order of evaluation now matters
• No referential transparency

Ø Calling the same function with the same arguments may produce different
results

• Aliasing may result in hard-to-understand bugs
Ø If we call a function with refs r1 and r2, it might do strange things if r1 and

r2 are aliases

Order of Evaluation
• Consider this example

let y = ref 1;;
let f _ z = z+1;; (* ignores first arg *)
let w = f (y:=2) !y;;
w;;

• What is w if f’s arguments are evaluated left to right?
• 3

• What if they are evaluated right to left?
• 2

25

26

OCaml Order of Evaluation

• In OCaml, the order of evaluation is unspecified
• This means that the language doesn’t take a stand, and different

implementations may do different things

• On my Mac, OCaml evaluates right to left
• True for the bytecode interpreter and x86 native code
• Run the previous example and see for yourself!

• Strive to make your programs produce the same answer
regardless of evaluation order

Order of Evaluation
List items are evaluated in right to left order

 let f () = Printf.printf ”F\t";;
 let g () = Printf.printf ”G\t";;
 [f (); g ()]
 G F - : unit list = [(); ()]

g () is called before f ()

27

Quiz 3: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + (f y) in
w

28

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 3: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + (f y) in
w

29

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 4: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + !y in
w

30

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 4: Will w’s value differ

let y = ref 1 in
let f z = z := !z+1; !z in
let w = (f y) + !y in
w

31

A. True
B. False

If evaluation order is left to right, rather than right to left?

left to right: 4

right to left: 3

Quiz 5: Which f is not referentially transparent?

32

I.e., not the case that f x = f y for all x = y

A. let f z =
 let y = ref z in
 y := !y + z;
 !y

B. let f =
 let y = ref 0 in
 fun z ->
 y := !y + z; !y

C. let f z =
 let y = z in
 y+z

D. let f z = z+1

Quiz 5: Which f is not referentially transparent?

33

B. let f =
 let y = ref 0 in
 fun z ->
 y := !y + z; !y

This is basically the counter function

I.e., not the case that f x = f y for all x = y

A. let f z =
 let y = ref z in
 y := !y + z;
 !y

C. let f z =
 let y = z in
 y+z

D. let f z = z+1

Structural vs. Physical Equality

• Structural comparison: = and <>
• Physical comparison: == and !=
• let x = [1;2;3];; let y = [1;2;3];;

• (x = y) (* true *) (x <> y) (* false *)
• (x == y) (* false *) (x != y) (* true *)

• Mostly you want to use = and <>
• E.g., the = operator is used for pattern matching

• But = is a problem with cyclic data structures

34

Equality of refs themselves

• Refs are compared structurally by their contents,
physically by their addresses

• ref 1 = ref 1 (* true *)
• ref 1 <> ref 2 (* true *)
• ref 1 != ref 1 (* true *)
• let x = ref 1 in x == x (* true *)

35

Mutable fields
• Fields of a record type can be declared as mutable:

36

type point = {x:int; y:int; mutable c:string};;
type point = { x : int; y : int; mutable c : string; }

let p = {x=0; y=0; c="red"};;
 val p : point = {x = 0; y = 0; c = "red"}

p.c <- “white”;;
- : unit = ()

p;;
 p : point = {x = 0; y = 0; c = ”white"}

p.x <- 3;;
 Error: The record field x is not mutable

Implementing Refs
• Ref cells are essentially syntactic sugar:

 type 'a ref = { mutable contents: 'a }
 let ref x = { contents = x }
 let (!) r = r.contents
 let (:=) r newval = r.contents <- newval

• ref type is declared in Pervasives
• ref functions are compiled to equivalents of above

37

Arrays
• Arrays generalize ref cells from a single mutable value to a

sequence of mutable values

let v = [|0.; 1.|];;
 val v : float array = [|0.; 1.|]

v.(0) <- 5.;;
 - : unit = ()

v;;
 - : float array = [|5.; 1.|]

38

Quiz 6: What does this evaluate to?
let x = [| 0; 1 |] in
let w = x in
x.(0) <- 1;
x == w

39

A. ()
B. true
C. false
D. Type error

Quiz 6: What does this evaluate to?
let x = [| 0; 1 |] in
let w = x in
x.(0) <- 1;
x == w

40

A. ()
B. true – they point to
the same array
C. false
D. Type error

Control structures

• Traditional loop structures are useful with imperative
features:

 while e1 do e2 done
 for x = e1 to e2 do e3 done
 for x = e1 downto e2 do e3 done

41

for i = 1 to 5 do
 Printf.printf "%d " i

done;;
1 2 3 4 5,

Hash Table
• Hashtbl Module

42

let h = Hashtbl.create 1331;
Hashtbl.add h "alice" 100;;
Hashtbl.add h "bob" 200;;
Hashtbl.iter (Printf.printf "(%s,%d)\n") h;;

(alice,100)
(bob,200)

https://v2.ocaml.org/api/type_Hashtbl.html

List.assoc as Map

• An association list is an easy implementation of a map
(aka dictionary)

43

let d = [("alice", 100); ("bob", 200);
 ("cathy", 300)]. (* (string * int) list *)
List.assoc "alice" d;;
 - : int = 100

List.assoc "frank" d;;
 Exception: Not_found.

Build a Map Using Functions

44

let empty v = fun _-> 0;;
let update m k v = fun s->if k=s then v else m s

let m = empty 0;;
let m = update m "foo" 100;;
let m = update m "bar" 200;;
let m = update m "baz" 300;;

m "foo";; (* 100 *)
m "bar";; (* 200 *)
let m = update m "foo" 101;;
m "foo";; (* 101 *)

Challenge: change the code to return all the values for a key

