CMSC 330: Organization of Programming
Languages

Closures
(Implementing Higher Order Functions)

Returning Functions as Results

» In OCaml you can pass functions as arguments t0o map, fold,
etc. and you can return functions as results

let pick fn n =
let plus3 x = x + 3 in
let plus4d x = x + 4 in
if n > 0 then plus3 else plus4
val pick fn : int -> (int->int) = <fun>

let g = pick fn 2;;
val g : int -> int = <fun>
g 4;; (* evaluates to 7 *)

Multi-argument Functions

» Consider a rewriting of the prior code (above)

let pick fn n =
if n > 0 then (fun x->x+3) else (fun x->x+4)

» Here’s another version

let pick fn n =
(fun x -> if n > 0 then x+3 else x+4)

Currying

» We just saw a way for a function to take multiple
arguments!

* |.e., no separate concept of multi-argument functions — can
encode one as a function that takes a single argument and
returns a function that takes the rest

» This encoding is called currying the function

* Named after the logician Haskell B. Curry.

> three programming languages are named after him: Haskell, Brook, and
Curry

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Haskell
https://en.wikipedia.org/wiki/BrookGPU
https://en.wikipedia.org/wiki/Curry_(programming_language)

Curried Functions In OCaml

» OCaml syntax defaults to currying. E.g.,

let add x vy = x + y

is identical to all of the following:

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + vy)
let add x = (fun y -> x+y)

add has type int -> (int -> int)

add 3 hastype int -> int

> add 3 is a function that adds 3 to its argument
(add 3) 4 = 7

Syntax Conventions for Currying

» Because currying is so common, OCaml uses the
following conventions:

- -> associates from the right

> Thus int -> int -> int IS the same as
> int -> (int -> int)

* function application associates from the left

> ThusS add 3 4 is the same as
> (add 3) 4

Quiz 1: Which f definition is equivalent?

let f ab=a/ b;;

.let £ b= funa ->a / b;;

.let £ = fun a -> (fun b -> a / b);;
.let £f=funa | b ->a/ b;;

. let £ (a, b) = a / b;;

o Q w »

Quiz 1: Which f definition is equivalent?

let f ab=a/ b;;

.let £ b= funa ->a / b;;

.let £ = fun a -> (fun b -> a / b);;
.let £f=funa | b ->a/ b;;

. let £ (a, b) = a / b;;

o Q w »

Quiz 2: What is enabled by currying?

>

Passing functions as arguments

B. Passing only a portion of the expected
arguments

. Naming arguments
. Recursive functions

O O

Quiz 2: What is enabled by currying?

>

Passing functions as arguments

B. Passing only a portion of the expected
arguments

. Naming arguments
. Recursive functions

O O

10

Multiple Arguments, Partial Application

» Another way for passing multiple arguments is using
tuples
«let £ (a,b) = a / b (* int*int -> int *)
elet £fab=a/b (*¥ int-> int-> int ¥*)

» Is there a benefit to using currying instead?

* Supports partial application — useful when you want to
provide some arguments now, the rest later

11

Closure

12

OCaml Example

let foo x =
let bar = fun y -> x + y in
bar
foo 10 = ?
(fun vy -> x + y) 10°?

Where is x?

13

Another Example

let x = 1 in
let £ = fun y -> x in
let x = 2 in

£ 0

What does this expression should evaluate to?

A. 1
B. 2

14

Another Example

let x = 1 in
let £ = fun y -> x in
let x = 2 in

£ 0

What does this expression should evaluate to?

A. 1
B. 2

15

Scope

» Dynamic scope

* The body of a function is evaluated in the current dynamic
environment at the time the function is called, not the old
dynamic environment that existed at the time the function was
defined.

» Lexical scope

* The body of a function is evaluated in the old dynamic
environment that existed at the time the function was defined,
not the current environment when the function is called.

16

Closure

let foo x = let x = 1 in
let bar y = x + y let £ = fun y -> x
in in
bar ;; let x = 2 in
£f0
foo 3 Closure Closure
/1N /|1 \
¥ %
fun y -> =
x+y fun y —>XB|
Function Environment

Function Environment

17

Closures Implement Static Scoping

» An environment is a mapping from variable names to
values

e Just like a stack frame

» A closure is a pair (f, e) consisting of function code f and
an environment e

» When you invoke a closure, f is evaluated using e to look
up variable bindings

18

Example — Closure 1

let add x = (fun y -> x + y)

(add 3) 4 . <cl>4 L3+4 7

Y \é Closure

Function —> fu:z;> ﬁ a <— Environment

Example — Closure 2

let mult sum (x, y) =
let z = x + y in
fun w > w * z

(mult_sum (3, 4)) 5 — <cl>5 —5*7

/1N

fun w ->
w * z

20

Quiz 3: What is x?

let a = 0;;

let b = 10;;

let £ () = a + b;;
let b = 5;;
let x = £ ();;

A. 15

B.1

C. 10

D. Error - variable name conflicts

21

Quiz 3: What is x?

let a = 0;;

let b = 10;;

let £ () = a + b;;
let b = 5;;
let x = £ ();;

A. 15

B.1

C. 10

D. Error - variable name conflicts

22

Quiz 4: What is z?

let £ x = fun y -> x - y in
let g =f 2 in
let x = 3 in
let z = g 4 in
zZ;;
A. -2
B. 7
C. -1
D. Type Error — insufficient arguments

23

Quiz 4: What is z?

let £ x = fun y -> x - y in
let g = f 2 in
let x = 3 in
let z = g 4 in
zZ;;
A. -2
B. 7
C. -1
D. Type Error — insufficient arguments

24

Quiz 5: What does this evaluate to?

let £ x = x+1 in
let g = £ in
g (fun i -> i+1) 10

A. Type Error
B.1

C. 2
D. 3

Quiz 5: What does this evaluate to?

let £ x = x+1 in
let g = £ in
(g (fun 1 -> i+1)) 10

A. Type Error — Too many arguments passed
to g (application is left associative)

.1

O QO W

2
. 3

Higher-Order Functions in C

» C supports function pointers, but does not support
closures

typedef int (*int func) (int);
void app(int func £, int *a, int n) ({
for (int 1 = 0; 1 < n; i++)
al[i] = £(a[i]);
}

int add one(int x) { return x + 1; }

int main() {
int a[] = {5, 6, 7};
app (add one, a, 3);

}

27

Java Example

public class Test{
public void doSomething () {
int a = 10; //must be final
Runnable runnable = new Runnable () {

public void run() { 4__—’///”——'

int b =a + 1; =<
System.out.println(b) ;

}
}s;
(new Thread (runnable)) .start () ; //runs later
//a = 100; //not allowed
}
public static void main (String[] args) {
Test t = new Test();
t.doSomething() ;

}
}// a=10 is removed from the stack here

Needed later,

makes copy of a

28

Java 8 Supports Lambda Expressions

» Ocaml’s
fun (a, b) -> a + b

» Is like the following in Java 8

(a, b) > a + b

» Java 8 supports closures, and variations on this syntax

29

