
CMSC 330: Organization of Programming
Languages

Closures
(Implementing Higher Order Functions)

1

2

Returning Functions as Results
In OCaml you can pass functions as arguments to map, fold,
etc. and you can return functions as results

let pick_fn n =
let plus3 x = x + 3 in
let plus4 x = x + 4 in
if n > 0 then plus3 else plus4

val pick_fn : int -> (int->int) = <fun>

let g = pick_fn 2;;
val g : int -> int = <fun>
g 4;; (* evaluates to 7 *)

3

Consider a rewriting of the prior code (above)
let pick_fn n =
if n > 0 then (fun x->x+3) else (fun x->x+4)

Here’s another version

let pick_fn n =
(fun x -> if n > 0 then x+3 else x+4)

Multi-argument Functions

4

Currying

We just saw a way for a function to take multiple
arguments!
• I.e., no separate concept of multi-argument functions – can

encode one as a function that takes a single argument and
returns a function that takes the rest

This encoding is called currying the function
• Named after the logician Haskell B. Curry.

Ø three programming languages are named after him: Haskell, Brook, and
Curry

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Haskell
https://en.wikipedia.org/wiki/BrookGPU
https://en.wikipedia.org/wiki/Curry_(programming_language)

5

Curried Functions In OCaml
OCaml syntax defaults to currying. E.g.,

• is identical to all of the following:

• add has type int -> (int -> int)
• add 3 has type int -> int

Ø add 3 is a function that adds 3 to its argument
• (add 3) 4 = 7

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

6

Syntax Conventions for Currying

Because currying is so common, OCaml uses the
following conventions:
• -> associates from the right

Ø Thus int -> int -> int is the same as
Ø int -> (int -> int)

• function application associates from the left
Ø Thus add 3 4 is the same as
Ø (add 3) 4

A. let f b = fun a -> a / b;;
B. let f = fun a -> (fun b -> a / b);;
C. let f = fun a | b -> a / b;;
D. let f (a, b) = a / b;;

7

let f a b = a / b;;

Quiz 1: Which f definition is equivalent?

A. let f b = fun a -> a / b;;
B. let f = fun a -> (fun b -> a / b);;
C. let f = fun a | b -> a / b;;
D. let f (a, b) = a / b;;

8

let f a b = a / b;;

Quiz 1: Which f definition is equivalent?

Quiz 2: What is enabled by currying?

A. Passing functions as arguments
B. Passing only a portion of the expected

arguments
C. Naming arguments
D. Recursive functions

9

Quiz 2: What is enabled by currying?

A. Passing functions as arguments
B. Passing only a portion of the expected

arguments
C. Naming arguments
D. Recursive functions

10

Multiple Arguments, Partial Application

Another way for passing multiple arguments is using
tuples
• let f (a,b) = a / b (* int*int -> int *)
• let f a b = a / b (* int-> int-> int *)

Is there a benefit to using currying instead?
• Supports partial application – useful when you want to

provide some arguments now, the rest later

11

Closure

12

OCaml Example

13

let foo x =
 let bar = fun y -> x + y in
 bar
;;

foo 10 = ?

(fun y -> x + y) 10?

Where is x?

Another Example

14

let x = 1 in
 let f = fun y -> x in
 let x = 2 in
f 0

A. 1
B. 2

What does this expression should evaluate to?

Another Example

15

let x = 1 in
 let f = fun y -> x in
 let x = 2 in
f 0

A. 1
B. 2

What does this expression should evaluate to?

Scope

Dynamic scope
• The body of a function is evaluated in the current dynamic

environment at the time the function is called, not the old
dynamic environment that existed at the time the function was
defined.

Lexical scope
• The body of a function is evaluated in the old dynamic

environment that existed at the time the function was defined,
not the current environment when the function is called.

16

Closure

17

let foo x =
 let bar y = x + y
in
bar ;;

let x = 1 in
let f = fun y -> x
in
let x = 2 in
f 0

Function Environment

Closurefoo 3 Closure

Function Environment

18

Closures Implement Static Scoping

An environment is a mapping from variable names to
values
• Just like a stack frame

A closure is a pair (f, e) consisting of function code f and
an environment e

When you invoke a closure, f is evaluated using e to look
up variable bindings

19

Example – Closure 1

let add x = (fun y -> x + y)

(add 3) 4 → <cl> 4 → 3 + 4 → 7

Function Environment

Closure

20

Example – Closure 2

let mult_sum (x, y) =
 let z = x + y in
 fun w -> w * z

(mult_sum (3, 4)) 5 → <cl> 5 → 5 * 7 → 35

A. 15
B. 1

C. 10

D. Error - variable name conflicts

21

let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?

A. 15
B. 1

C. 10

D. Error - variable name conflicts

22

let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?

A. -2
B. 7

C. -1

D. Type Error – insufficient arguments

23

let f x = fun y -> x – y in
 let g = f 2 in
 let x = 3 in
 let z = g 4 in
z;;

Quiz 4: What is z?

A. -2
B. 7

C. -1

D. Type Error – insufficient arguments

24

Quiz 4: What is z?

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;

25

let f x = x+1 in
 let g = f in
 g (fun i -> i+1) 10

Quiz 5: What does this evaluate to?

A. Type Error
B. 1

C. 2
D. 3

A. Type Error – Too many arguments passed
to g (application is left associative)

B. 1
C. 2
D. 3

26

let f x = x+1 in
let g = f in
(g (fun i -> i+1)) 10

Quiz 5: What does this evaluate to?

27

Higher-Order Functions in C

C supports function pointers, but does not support
closures

typedef int (*int_func)(int);
void app(int_func f, int *a, int n) {
 for (int i = 0; i < n; i++)
 a[i] = f(a[i]);
}
int add_one(int x) { return x + 1; }
int main() {
 int a[] = {5, 6, 7};
 app(add_one, a, 3);
}

Java Example

28

public class Test{
 public void doSomething(){
 int a = 10; //must be final
 Runnable runnable = new Runnable(){
 public void run(){
 int b = a + 1;
 System.out.println(b);
 }
 };
 (new Thread(runnable)).start(); //runs later
 //a = 100; //not allowed
 }
 public static void main(String[] args){
 Test t = new Test();
 t.doSomething();
 }
}// a=10 is removed from the stack here

Needed later,
makes copy of a

Java 8 Supports Lambda Expressions

Ocaml’s

Is like the following in Java 8

Java 8 supports closures, and variations on this syntax

29

(a, b) -> a + b

fun (a, b) -> a + b

