
CMSC 330: Organization of Programming
Languages

OCaml Data Types

1
CMSC330 Spring 2024

Review: Fold

2

let rec fold_left f a l =
 match l with
 [] -> a
 | h::t -> fold_left f (f a h) t

let rec fold_right f l a =
 match l with
 [] -> a
 | h::t -> f h (fold_right f t a)

Review: Fold

3

fold_left (+) 0 [1;2;3]
fold_left (+) 1 [2;3]
fold_left (+) 3 [3]
fold_left (+) 6 []
6

fold_right (+) [1;2;3] 0
1 + (fold_right (+) [2;3] 0)
1 + (2 + (fold_right (+) [3] 0))
1 + (2 + (3 (fold_right (+) [] 0)))
1 + (2 + (3 + 0)) 1 + (2 + 3)
1 + 5
6

4

OCaml Data

• So far, we’ve seen the following kinds of data
• Basic types (int, float, char, string)
• Lists

Ø One kind of data structure
Ø A list is either [] or h::t, deconstructed with pattern matching

• Tuples and Records
Ø Let you collect data together in fixed-size pieces

• Functions

• How can we build other data structures?
• Building everything from lists and tuples is awkward

(User-Defined) Variants
type gen =

|Int of int
|Str of string;;

let ls = [Int 10; Str "alice”]

let print_gen lst =
match lst with
|Int i->Printf.printf “%d\n” i
|Str s-> Printf.printf “%d\n” s

List.iter print_gen ls
5

Variants (full definition)
• Syntax

• type t = C1 [of t1] | … | Cn [of tn]

• the Ci are called constructors
• Evaluation
• A constructor Ci is a value if it has no assoc. data

Ø Ci vi is a value if it does
• Destructing a value of type t is by pattern matching

Ø patterns are constructors Ci with data components, if any

• Type Checking
• Ci [vi] : t [if vi has type ti]

6

7

Data Types: Variants with Data
type shape =
 Rect of float * float
 | Circle of float

let area s =
 match s with
 Rect (w, l) -> w *. l
 | Circle r -> r *. r *. 3.14
;;
area (Rect (3.0, 4.0));; (* 12.0 *)
area (Circle 3.0);; (* 28.26 *)

[Rect (3.0, 4.0) ; Circle 3.0]. (* shape list*)

8

Quiz 1

type foo = ((string list) * int) list

A. [("foo", "bar”, 5)]
B. [(["foo", "bar"],6)]
C. [([("foo", "bar")],8)]
D. [(["foo"; "bar"],7)]

Which one of the following could match type foo?

9

Quiz 1

type foo = ((string list) * int) list

A. [("foo", "bar”, 5)] string * string * int) list
B. [(["foo", "bar"],6)]((string*string) list*int) list
C. [([("foo", "bar")],8)] same as B
D. [(["foo"; "bar"],7)] (string list * int) list

Which one of the following could match type foo?

10

Quiz 2: What does this evaluate to?

A. 5
B. 2
C. 5.0

D. Type Error

type num = Int of int | Float of float;;

let aux a =
 match a with
 | Int i -> i
 | Float j -> int_of_float j
;;

aux (Float 5.0);;

11

Quiz 2: What does this evaluate to?

A. 5
B. 2
C. 5.0

D. Type Error

type num = Int of int | Float of float;;

let aux a =
 match a with
 | Int i -> i
 | Float j -> int_of_float j
;;

aux (Float 5.0);;

12

Option Type

• Comparing to Java: None is like null, while
Some i is like an Integer(i) object

type optional_int =
 None
 | Some of int

let divide x y =
 if y != 0 then Some (x/y)
 else None

let string_of_opt o =
 match o with
 Some i -> string_of_int i
 | None -> “nothing”

13

Polymorphic Option Type

type 'a option =
 Some of 'a
| None

let p = opthd [];; (* p = None *)
let q = opthd [1;2];; (* q = Some 1 *)
let r = opthd [“a”];; (* r = Some “a” *)

let opthd l =
 match l with
 [] -> None
 | x::_ -> Some x

14

Quiz 3: What does this evaluate to?

A. 45.5
B. 42.0
C. Some 45.5

D. Error

let foo f = match f with
 None -> 42.0
 | Some n -> n +. 42.0
;;
foo 3.5;;

15

Quiz 3: What does this evaluate to?

A. 45.5
B. 42.0
C. Some 45.5

D. Error

let foo f = match f with
 None -> 42.0
 | Some n -> n +. 42.0
;;
foo 3.5;; foo (Some 3.5)

16

Recursive Data Types: List
type 'a mylist =
 Nil
 | Cons of 'a * 'a mylist

let l = Cons (10, Cons (20, Cons (30, Nil)))

let rec len = function
 Nil -> 0
 | Cons (_, t) -> 1 + (len t)

17

Recursive Data Types: Binary Tree
type 'a tree =
 Leaf
 | Node 'a tree * 'a * 'a tree

let empty = Leaf
let t = Node(Leaf, 100, Node(Leaf,200,Leaf))

let rec sum t =
 match t with
 Leaf -> 0
 | Node(l,v,r)-> sum l + v + sum r

18

OCaml Exceptions
exception My_exception of int
let f n =
 if n > 0 then
 raise (My_exception n)
 else
 raise (Failure "foo")
let bar n =
 try
 f n
 with My_exception n ->
 Printf.printf "Caught %d\n" n
 | Failure s ->
 Printf.printf "Caught %s\n" s

19

OCaml Exceptions: Useful Examples
• failwith s:Raises exception Failure s (s is a string).
• Not_found:Exception raised by library functions if the object does not exist
• invalid_arg s:Raises exception Invalid_argument s

let div x y =
 if y = 0 then failwith "div by 0" else x/y;;

let lst =[(1,"alice");(2,"bob");(3,"cat")];;
let lookup key lst =
 try
 List.assoc key lst
 with
 Not_found -> "key does not exist"

