
CMSC 330
Organization of Programming Languages

OCaml
Higher Order Functions

Map & Fold

1CMSC 330 – Spring 2024

2

Passing Functions as Arguments
You can pass functions as arguments

let plus3 x = x + 3 (* int -> int *)

let twice f z = f (f z)
(* ('a->'a) -> 'a -> 'a *)

twice plus3 5 = 11

The Map Function
map is a higher order function

let add_one x = x + 1
let negate x = -x
map add_one [1; 2; 3]
map negate [9; -5; 0]

3

map f [v1; v2; …; vn]
 = [f v1; f v2; …; f vn]

= [2; 3; 4]

= [-9; 5; 0]

How can we implement Map?
let rec add1all l =
 match l with
 [] -> []
 | h::t ->
 (add_one h):: add1all t

let rec negall l =
 match l with
 [] -> []
 | h::t ->
 (neg h):: negall t

4

let rec map f l =
 match l with
 [] -> []
 | h::t -> (f h)::(map f t)

Implementing map

What is the type of map?

5

() -> ->

f l

let rec map f l =
 match l with
 [] -> []
 | h::t -> (f h)::(map f t)

Implementing map

What is the type of map?

6

('a -> 'b) -> 'a list -> 'b list

f l

let rec map f l =
 match l with
 [] -> []
 | h::t -> (f h)::(map f t)

map, as a cartoon

7

map cook =

map is included in the standard List module, i.e., as List.map

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]

C. Error
D. [4; 8; 12]

8

Quiz 4: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

9

map (fun x -> x * 4) [1;2;3]

Quiz 4: What does this evaluate to?

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]

C. Error
D. [4; 8; 12]

10

map ??? [1; 0; 3] = [true; false; true]

Quiz 5: Which function to use?

A. fun x -> true
B. fun x -> x = 0
C. fun x -> x != 0
D. fun x -> x = (x != 0)

11

map ??? [1; 0; 3] = [true; false; true]

Quiz 5: Which function to use?

A. fun x -> true
B. fun x -> x = 0
C. fun x -> x != 0
D. fun x -> x = (x != 0)

Note type error!
int bool

12

fold

Two Recursive Functions

let rec sum l =
 match l with
 [] -> 0
 | h::t -> h + (sum t)

let rec concat l =
 match l with
 [] -> ""
 | h::t -> h ^ (concat t)

Concatenate a list of stringsSum a list of ints

sum [1;2;3;4];;
- : int = 10

concat ["a";"b";"c"];;
- : string = "abc"

13

let rec concat l =
 match l with
 [] -> ""
 | h::t -> h ^ (concat t)

let rec sum l =
 match l with
 [] -> 0
 | h::t -> h + (sum t)

Notice Anything Similar?

let rec sum l =
 match l with
 [] -> 0
 | h::t -> (+) h (sum t)

Concatenate a list of stringsSum a list of ints

14

let rec concat l =
 match l with
 [] -> ""
 | h::t -> (^) h (concat t)

The fold Function

let rec sum lst =
 match l with
 [] -> 0
 | h::t -> (+) h (sum t)

let rec concat lst =
 match l with
 [] -> ""
 | h::t -> (^) h (concat t)

Concatenate a list of strings:Sum a list of ints

15

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> f h (foldr f a t)

let sum l = fold (+) 0 lst

let concat l = fold (^) "" lst

16

What does fold do?

let add a x = a + x
fold add 0 [1; 2; 3] →
fold add (add 0 1) [2; 3] →
fold add 1 [2; 3] →
fold add (add 1 2) [3] →
fold add 3 [3] →
fold add (add 3 3) [] →
fold add 6 [] →
6

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

We just built the sum function!

17

Using Fold to Build Reverse

Let’s build the reverse function with fold!
let prepend a x = x::a
fold prepend [] [1; 2; 3; 4] →
fold prepend [1] [2; 3; 4] →
fold prepend [2; 1] [3; 4] →
fold prepend [3; 2; 1] [4] →
fold prepend [4; 3; 2; 1] [] →
[4; 3; 2; 1]

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

List.fold_left

fold f v [v1; v2; …; vn]
= fold f (f v v1) [v2; …; vn]
= fold f (f (f v v1) v2) […; vn]
= …
= f (f (f (f v v1) v2) …) vn

§ e.g., fold add 0 [1;2;3;4] =
add (add (add (add 0 1) 2) 3) 4 = 10

18

let rec fold f a l =
 match l with
 [] -> a
 | h::t -> fold f (f a h) t

List.fold_right

CMSC 330 - Fall 2021 19

fold_right f [v1; v2; …; vn] v =
 f v1 (f v2 (…(f vn v)…))

fold_right add [1;2;3;4] 0 =
 add 1 (add 2 (add 3 (add 4 0))) = 10

let rec foldr f a l =
 match l with
 [] -> a
 | h::t -> f h (foldr f a t)

20

let f x y = (if x > y then x else y) in
fold f 0 [3;4;2]

A. 0
B. true

C. 2
D. 4

Quiz 6: What does this evaluate to?

21

let f x y = if x > y then x else y in
fold f 0 [3;4;2]

A. 0
B. true

C. 2
D. 4

Quiz 6: What does this evaluate to?

22

fold (fun a y -> a-y) 0 [3;4;2]

A. -9
B. -1

C. [2;4;3]
D. 9

Quiz 7: What does this evaluate to?

23

fold (fun a y -> a-y) 0 [3;4;2]

A. -9
B. -1

C. [2;4;3]
D. 9

Quiz 7: What does this evaluate to?

Type of fold_left, fold_right

24

let rec fold_left f a l =
 match l with
 [] -> a
 | h::t -> fold_left f (f a h) t

() -> -> ->

f la

Type of fold_left, fold_right

25

let rec fold_left f a l =
 match l with
 [] -> a
 | h::t -> fold_left f (f a h) t

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

f la

Type of fold_left, fold_right

26

let rec fold_left f a l =
 match l with
 [] -> a
 | h::t -> fold_left f (f a h) t

let rec fold_right f l a =
 match l with
 [] -> a
 | h::t -> f h (fold_right f t a)

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

f la

('b -> 'a -> 'a) -> 'b list -> 'a -> 'a

f l a

Summary: Left-to-right vs. right-to-left
fold_left f v [v1; v2; …; vn] =
f (f (f (f v v1) v2) …) vn

fold_right f [v1; v2; …; vn] v =

f v1 (f v2(… (f vn v) …))

fold_left (fun x y -> x – y) 0 [1;2;3] = -6

since ((0-1)-2)-3) = -6

fold_right [1;2;3] (fun x y -> x – y) 0 = 2

since 1-(2-(3-0)) = 2

27

When to use one or the other?

Many problems lend themselves to fold_right
But it does present a performance disadvantage
• The recursion builds of a deep stack: One stack frame for each

recursive call of fold_right
An optimization called tail recursion permits optimizing
fold_left so that it uses no stack at all
• We will see how this works in a later lecture!

28

Fold Example 1: Product of an int list

let mul x y = x * y;;

let lst = [1; 2; 3; 4; 5];;

fold mul 1 lst
- : int = 120

fold mul 0 lst;;
- : int = 0

Wrong accumulator

29

Example 2: Count elements of a list satisfying a
condition

let countif p l =
fold (fun counter element ->
 if p element then counter+1
 else counter) 0 l ;;

countif (fun x -> x > 0) [30;-1;45;100;0];;

- : int = 3

30

Fold Example 3: Collect even numbers in the list
let f acc y = if (y mod 2) = 0 then y::acc

else acc;;

fold f [] [1;2;3;4;5;6];;

- : int list = [6; 4; 2] Reversed

31

Fold Example 4: Find the maximum from a list

let maxList lst =
 match lst with
 []->failwith "empty list"
 |h::t-> fold max h t ;;

maxList [3;10;5];;
- : int = 10

(*
maxList [3;10;5]
fold max 3 [10:5]
fold max (max 3 10) [5]
fold max (max 10 5) []
fold max 10 []
10
*)

32

Combining map and fold
Idea: map a list to another list, and then fold over it to
compute the final result
• Basis of the famous “map/reduce” framework from Google, since

these operations can be parallelized

33

let countone l =
 fold (fun a h -> if h=1 then a+1 else a) 0 l

let countones ss =
 let counts = map countone ss in
 fold (fun a c -> a+c) 0 counts

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2

Sum of sublists
Given a list of int lists, compute the sum of each int list, and return
them as list.

For example:
sumList [[1;2;3];[4];[5;6;7]]
- : int list = [6; 4; 18]

34

let sumList = map (fold (+) 0);;

