CMSC 330: Organization of Programming
Languages

Type-Safe, Low-level Programming with
Rust

CMSC 330 Spring 2024

What choice do programmers have?

C/C++ Java, OCaml, Go, Ruby...
 Type-unsafe « Type safe
* Low level control « High level, less control

« Performance over safety and
ease of use

 Manual memory management,
e.g., with malloc/free

Something in between ... ?

CMSC 330 Spring 2024

Ease-of-use and safety over
performance

Automatic memory
management via garbage
collection

* No explicit malloc/free

Rust: Type-safe (and Thread-safe), and Fast

* A Mozilla-sponsored, public
project since 2010

— Started in 2006 by Graydon
Hoare while at Mozilla

* Most loved programming
language in Stack Overflow

annual surveys every year
from 2016 through 2020

« Key properties: Type safety,
and no data races, despite use
of concurrency and manual
memory management

CMSC 330 Spring 2024

Rust in the Real World

* Firefox Quantum and Servo components
— https://servo.org

REmacs port of Emacs to Rust

— https://github.com/Wilfred/remacs
Amethyst game engine

— https://www.amethyst.rs/

Magic Pocket filesystem from Dropbox

— https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

OpenDNS malware detection components
 https://www.rust-lang.org/en-US/friends.html

CMSC 330 Spring 2024

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Features of Rust

 Lifetimes and Ownership
— Key feature for ensuring safety

 Traits as core of object(-like) system
» Variable default is immutability
« Data types and pattern matching

* Type inference
— No need to write types for local variables

« Generics (aka parametric polymorphism)
» First-class functions
 Efficient C bindings

CMSC 330 Spring 2024

Takes ideas from
functional and OO
languages, and
recent research

Installing Rust

* |nstructions, and stable installers, here:

https.//www.rust-lang.org/en-US/install.html

 On a Mac or Linux (VM), open a terminal and run
curl https://sh.rustup.rs -sSf | sh

* On Windows, download+run rustup-init.exe

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

CMSC 330 Spring 2024

Rust Compiler, Build System

« Rust programs can be compiled using rustc
— Source files end in suffix .rs

— Compilation, by default, produces an executable
* No —c option

« Preferred: Use the cargo package manager
— Will invoke rustc as needed to build files
— Will download and build dependencies

— Based on a .toml file and .lock file
* You won’t have to mess with these for this class

— Like ocamlbuild or dune

CMSC 330 Spring 2024

Using cargo

e Mak roj ild it, run i
daKe a p OJeCt’ build it, run it Use cargo to run tests,

too; will discuss later

% cargo new hello cargo --bin

% cd hello cargo
1s
Cargo.toml src/

% 1s src fn main() {
_ println! ("Hello, world!”)
main.rs

|}

% cargo build

o°

Compiling hello_cargo v0.1.0 (file:///..) |Uses rustc, the

Finished dev [unoptimized + debuginfo] .. | Rust compiler

% ./target/debug/hello cargo
Hello, world!

CMSC 330 Spring 2024 More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, Interactively

d C ® [0 & play.rust-lang.org

° Rust haS nO top_level a + SIGPLAN Blog Co.. @ Reload @ UMCP
la OCaml or Ruby v > [T

» fn main() {
println!("Hello, world!");

}

 There is an in-browser
execution environment
— https://play.rust-lang.org/

Execution

Compiling playground v0.0.1 (/playground)
Finished dev [unoptimized + debuginfo] target(s) in 0.98s
Running 'target/debug/playground’

Hello, world!
CMSC 330 Spring 2024

Rust Documentation

* Rust documentation is a good
reference, and way to learn THE RUST
— https://doc.rust- PROGRAMMING
lang.org/stable/ LANGUAGE

 This contains links to

— the Rust Book (on which
most of our slides are
based)

— the reference manual, and

— short manuals on the
compiler, cargo, and more

CMSC 330 Spring 2024

https://doc.rust-lang.org/stable/
https://doc.rust-lang.org/stable/

Rust Basics

CMSC 330 Spring 2024

Functions

// comment
fn main() {
println! (“Hello, world!”);

}

Hello, world!

CMSC 330 Spring 2024

Let Statements

{

{
let x = 37;
Xx =x + 5;//err
x

}

{ //err:
let x:u32
let y =x + 5;
y

}

!
|
=

{

{

let x = 37;
let y =x + 5;
4
}//42
{
let x = 37;
let X =x + 5/
X
}//42
Redefining a
variable shadows
it (like OCaml);
aim to avoid

CMSC 330 Spring 2024

let mut x = 37; let x:i16 = -1;
x=x+5; let y:116 = x+5;
X y

Y/ /42 Y/ /4
Variables Types inferred by

immutable by
default; use mut
to allow updates

default; optional
annotations must be
consistent (may

override defaults)

Conditionals

fn main() {
let n = 5;
if n< 0 {
print! ("{} is negative", n);
} else 1if n > 0 {
print! ("{} is positive", n);
} else {
print! ("{} is zero", n);
}
}

5 1s positive

CMSC 330 Spring 2024

Conditionals are Expressions (like OCaml)

fn main() {
let n 5;
let x if n < 0 {

b else { Type error

ng" -«

i~

}i
print! ("{:?}|",x);

}

CMSC 330 Spring 2024

Factorial in Rust (recursively)

fn fact(n:i32) -> i32
{
ifn=0{11}
else {
let x = fact(n-1);
n * x
}
}

fn main() {

let res = fact(6);

println! (“fact(6) = {}”,res);
}

fact(6) = 720

CMSC 330 Spring 2024

Quiz: What does this evaluate to?

{ let x = 6;
let vy = "hi";
if x == 5 {y }) else { 5 };
v

}

OO N O

A.
B.
C.
D. Error

CMSC 330 Spring 2024

Quiz: What does this evaluate to?

{ let x = 6;
let vy = "hi";
if x == 5 {y }) else { 5 };
v

}

OO N O

A.
B.
C.
D. Error — if and else have incompatible types

CMSC 330 Spring 2024

Quiz: What does this evaluate to?

A. 6

B. true
C. false
D. error

CMSC 330 Spring 2024

Quiz: What does this evaluate to?

A. 6

B. true

C. false

D. error —y is immutable

CMSC 330 Spring 2024

Using Mutation

« Mutation is useful when performing iteration
— As in C and Java

fn fact(n: u332) -> u32 {
let mut x n;
let mut a
loop {
if x <=1 { break; }
a * x;
x - 1;

infinite loop
(break out)

CMSC 330 Spring 2024

Other Looping Constructs

* While loops
—while e block

* Forloops

— for pat in e block
» More later — e.g., for iterating through collections

for x in 0..10 {
println! ("{}", x); // x: i32
}

CMSC 330 Spring 2024

Other Looping Constructs

 These (and loop) are expressions

— They return the final computed value
* unit, if none
- break may take an expression, which is the loop’s final value

let mut x = 5;

let y = loop {
X += x - 3;
println!' ("{}", x);// 7111935
X % 5 =0 { break x; }

}i

print! ("{}",y); /I35

CMSC 330 Spring 2024

Quiz: What does this evaluate to?

4

let mut x

1
for i in 1..6 {
let x = x + 1;

}
X

A. 1

B. 6

C.0

D. error

CMSC 330 Spring 2024

Quiz: What does this evaluate to?

4

let mut x 1
for i in 1..6
+

{
let x = x 1;

CMSC 330 Spring 2024

Data: Scalar Types

Integers
- i8,i16,i32, 164, isize
- u8,ul6, u32, u
Characters (unicode)

— char

Booleans
- bool ={ true, fa

_ Machine word size
uslize

Defaults (from inference)

mbers

Floating point
- £32, £64

* Note: arithmetic operators (+, -, etc.) overloaded

CMSC 330 Spring 2024

Compound Data: Tuples

 Tuples
— n-tuple type (t1,.., tn)
« unit () isjust the O-tuple
— n-tuple expression (e1, ..., en)
— Accessed by pattern matching or like a record field

let tuple = ("hello", 5, 'c¢');
assert eq! (tuple.O, "hello");
let(x,y,2z) = tuple;

CMSC 330 Spring 2024

Compound Data: Tuples

Distance between two points s and e

fn dist(s: (£f64,£f64) ,e: (f64,£f64)) -> f£64 {
let (sx,sy) = s;
let ex = e.0;
let ey = e.1;
let dx ex - sx;
let dy = ey - sy,
(dx*dx + dy*dy) .sgrt()

CMSC 330 Spring 2024

Compound Data: Tuples

Can include patterns in parameters directly, too

fn dist2((sx,sy) : (£64,£f64), (ex,ey) : (£64,£f64)) -> £64 {
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy) .sqrt()

We’'ll see Rust structs later. They generalize tuples.

CMSC 330 Spring 2024

Arrays: Standard Operations

« Creating an array (can be mutable or not)
— But must be of fixed length

* Indexing an array
« Assigning at an array index

let nums = [1,2,3]; // type is [i32;3]

let strs = ["Monday", "Tuesday", "Wednesday"];
let x = nums[0]; // 1

let s = strs[l]; // "Tuesday"

let mut xs = [1,2,3];

xs[0] = 1; // OK, since xs mutable

let 1 = 4;

let vy = nums[i]; //fails (panics) at run-time

//[&str; 3]

CMSC 330 Spring 2024

Arrays: Iteration

» Rust provides a way to iterate over a collection
— Including arrays

let a = [10,20,30,40,50];
for element in a.iter() {
println! ("the value is: {}", element);

}

— a.iter () produces an iterator, like a Java iterator
* This is a method call, a la Java. More about these later

— The special for syntax issues the .next () call until no
elements are left
» No possibility of running out of bounds

CMSC 330 Spring 2024

Quiz: Will this function type check?

fn £(n:[u32]) -> u32 {
n[0]
}

A. Yes
B. No

CMSC 330 Spring 2024

Quiz: Will this function type check?

fn £f(n:[u32;1len]) -> u32 {
n[0]
}
A. Yes fn £(n:[u32;4]) -> u32 {
B. No — because n[0]
array length not }
known. Need to fn main() {
fill in 1len let a = [1, 2, 3, 4];

println! ("{:?}"
}

, £(a));

CMSC 330 Spring 2024

Testing

* |In any language, there is the need to test code

* In most languages, testing requires extra libraries:
— Minitest in Ruby
— Ounit in Ocaml
— Junitin Java
« Testing in Rust is a first-class citizen!
— The testing framework is built into cargo

CMSC 330 Spring 2024

Unit Testing In Rust

« Unit testing is for local or private functions
» Put such tests in the same file as your code

 Use assert! to test that something is true

* Use assert eq! to test that two things that implement
the PartialEq trait are equal

* E.g., integers, booleans, etc.
« We'll explain traits later on

CMSC 330 Spring 2024

Unit Testing In Rust

This is a
module,

tests T

fn bad_add(a: 132, b: 132) -> 132 {
a->= Indicates that

} this module
contains tests
#0cfg (tesD)]

mod tests {

tes
fn test bad add() ({
assert eq! (bad add(1,2),3);
}
}

CMSC 330 Spring 2024

Indicates
that this
function is
a test

Integration Testing In Rust

* Integration testing is for APIs and whole programs

Create a tests directory

Create different files for testing major functionality
Files don't need #[cfg(test)] or a special module
— But they do still need #[test] around each function

Tests refer to code as if it were an external library
— Declare it as an external library using extern crate
— Include the functionality you want to test with use

CMSC 330 Spring 2024

Integration Testing In Rust

src/lib.rs

pub fn add(a: 132, b: i32)
a+b

-> 132 {

tests/test _add.rs

extern crate my-project-name;

use my-project-name: :add;

#[test]

pub fn test add() ({
assert _eq! (add(1,2), 3));

}

#[test]

pub fn test negative_ add() ({
assert _eq! (add(1,-2), -1));

}

CMSC 330 Spring 2024

Running Tests

« cargo test runs all of your tests
« cargo test s runs all tests that contain s in the name

« By default, console output is hidden
« Use cargo test -- --nocapture to un-hide it

CMSC 330 Spring 2024

Fun Fact

« The original Rust compiler was written in OCaml
— Betrays the sentiments of the language’s designers!

 Now the Rust compiler is written in ... Rust

— How is this possible? Through a process called bootstrapping:

» The first Rust compiler written in Rust is compiled by the Rust compiler
written in OCaml

« Now we can use the binary from the Rust compiler to compile itself

» We discard the OCaml compiler and just keep updating the binary through
self-compilation

« So don’t lose that binary! ©

CMSC 330 Spring 2024

