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1 A basic review of continuous distributions

Discrete Continuous
X = x X ∈ [x, x + dx)
Pr[X = x] Pr[X ∈ [x, x + dx)] = f(x)dx, where f(x) is the “density function” of X

Pr[a ≤ X ≤ b]
∫ b

a
f(x)dx

E[X] =
∑

x x · Pr[X = x] E[X] =
∫∞
−∞ xf(x)dx

If follows that if X is always between l, u, then f(x) ≥ 0 and
∫ u

l
f(x)dx = 1

Note that Pr[X = x] is f(x)dx = 0 · f(x). Therefore the probability of any variable being exactly some
value is 0. From this it follows that the probability that two continuous random variables have the same
value is 0.

One important continuous distribution is the normal or Gaussian distribution. If the mean is µ and
standard deviation is σ, then

f(x) =
1√
2πσ

e
−(x−µ)2

2σ2

here.

Another frequently used distribution is the uniform distribution over a bounded range, such as [0, 1]. (If
this range is [a, b], then the density function f(x) is the constant 1/(b−a).) The idealized version allows
us to pick a real number uniformly at random from a bounded range. In practice we approximate this
by a discretization of the space.

2 Convexity and some of its consequences

Recall that a function f is convex in the interval [a, b] if for any [u, v] ⊆ [a, b], the graph of f lies below
the line segment that joins the points (u, f(u)) and (v, f(v)): that is,

∀(u, v) such that a ≤ u ≤ v ≤ b, ∀p ∈ [0, 1], f(up + v(1− p)) ≤ p · f(u) + (1− p) · f(v).

And, f is called concave in [a, b] if the final inequality gets reversed in direction. In case the second
derivative f ′′ exists for x ∈ [a, b], then f can be shown to be convex in [a, b] iff f ′′(x) ≥ 0, and concave
in [a, b] iff f ′′(x) ≤ 0. Using this, or pictorially, one can verify that:

• f(x) = x2k is convex over the entire real line, for all positive integers k;

• f(x) = eax is convex over the entire real line, for all reals a;

• f(x) = lnx and f(x) =
√

x are concave for the entire range (0,∞);

• f(x) = x3, f(x) = x5 etc. are concave for x < 0, and convex for x > 0;

• a linear function is both concave and convex.
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The following fact is often useful. Suppose a function f is convex in some domain D = [a, b] and
x1, . . . , xn are variables such that xi ∈ D and

∑
xi = c, then

∑
i f(xi) is minimized when all xi are the

same (i.e., c/n). Therefore, ∑
i

f(xi) ≥ n · f(c/n). (1)

Conversely, to maximize
∑

i f(xi) subject to the given constraints, we must push the xi’s as much as
possible to their “extreme values” (the definition of this varies from one context to another, but the
intuitive meaning remains: “do the opposite of pushing the xi toward each other”.) As can be expected,
the situation is exactly reversed for concave functions f : make the xi equal if we aim to maximize∑

i f(xi), and do a sort of opposite if the goal is to minimize
∑

i f(xi)

Jensen’s Inequality: This is an easy consequence of convexity, and says the following. If f is a convex
function in the interval [a, b], then for any random variable X taking values in [a, b],

E[f(X)] ≥ f(E[X]);

and, f is a concave function in the interval [a, b], then for any random variable X taking values in [a, b],

E[f(X)] ≤ f(E[X]).

We finally note that all the above discussion was focused on uni-variate functions f , but quite a bit of
the above also extends to real-valued multi-variate functions f(x1, x2, . . . , xn).

3 Additional inequalities and some information theory

We begin by examining some additional useful bounds.

• 1 + x ≤ ex ∀x; also, (1− 1
n )n−1 ≥ 1

e for n ≥ 2. In particular, the bound (1− x)t ≤ e−tx for x ≤ 1
and t > 0 that follows from the first inequality here, is used routinely.

• Stirling’s approximation: F (n) =
√

2πn(n
e )n, and Robbins’ formula for the error of the approxi-

mation: e1/(12n+1) ≤ n!
F (n) ≤ e1/(12n). Note that both e1/(12n+1) and e1/(12n) are very close to 1

even for moderately large n; e.g., n ≥ 5. Thus, Stirling’s formula is a very good approximation for
n! if n ≥ 5, say.

• (n
r )r ≤

(
n
r

)
≤ (ne

r )r; in fact,
∑r

i=0

(
n
i

)
≤ (ne

r )r.

• An alternative bound is as follows. Let H(α) = −α log2 α − (1 − α) log2(1 − α) be the “binary
entropy function” for 0 ≤ α ≤ 1; if α is 0 or 1, we define H(α) = 0. Then, for α ≤ 1

2 ,
αn∑
i=0

(
n

i

)
≤ 2nH(α). (2)

This last statement, (2), is of particular interest, so we introduce basic information theory next to look
at it more closely.

3.1 Basic Information Theory

We first consider the following definitions and observations from information theory. Let X be a random
variable which takes on the value ai with probability pi for i = 1 . . . n. We loosely define the entropy of
X as the “amount of randomness in X”, given by the function:

H(X) = −
n∑

i=1,pi 6=0

pi log2 pi

From this we have the following facts:
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• H(X) ≥ 0, and H(X) = 0 iff X is deterministic (one of the pi equals 1).

• For n-valued X, H(X) is maximized when X uses the uniform distribution, that is,

p1 = p2 = . . . = pn =
1
n

; in this case, H(X) = − log2(
1
n

) = log2 n

In particular, H(X) ≤ log2 n; we will see this in the proof of Claim 1.

• For joint distributions, H(X1, X2, . . . , Xm) ≤
∑m

i=1 H(Xi).

We now consider the following example, which will be useful in proving (2).

Example: X =
{

1 with probability p
0 with probability 1− p

From this we have that H(X) = −p log2 p − (1 − p) log2(1 − p), which we will call H(p) for simplicity
(though it is an abuse of notation since p is a value while X is a random variable). It is easy to see that
H(p) is a concave function either by viewing the graph of the function or by taking its second derivative.
With this, we can prove (2), which we state next in more generality.

Claim 1 Let α ≤ 1
2 , and let S be any set of n-bit strings such that the average number of 1’s in a string

in S is ≤ αn. (That is, the average taken over all strings s ∈ S of the number of ones in s, is at most
αn.) Then |S| ≤ 2nH(α).
Proof Let X = (X1, X2, . . . , Xn) chosen uniformly at random from S. Then H(X) = log2 |S|. In fact,

log2 |S| = H(X) ≤
n∑

i=1

H(Xi)

Suppose ∀i,Xi =
{

1 with probability pi

0 with probability 1− pi
; then H(Xi) = H(pi) as in the example.

Thus
∑n

i=1 H(Xi) =
∑n

i=1 H(pi).

Now notice that we know something about the sum of these pi’s, in particular:

n∑
i=1

pi =
n∑

i=1

E[Xi] = E[
n∑

i=1

Xi] ≤ αn

We now use the fact that if we have a sum of concave functions which is equal to a fixed value, that sum
is maximized when the functions are equal. Therefore, if

∑n
i=1 pi = t,

n∑
i=1

H(pi) ≤ n ·H(
t

n
) ≤ nH(α) since α ≤ 1

2

Therefore |S| ≤ 2nH(α).
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