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Back to linear classification

« So far: we've seen that kernels can help capture
non-linear patterns in data while keeping the
advantages of a linear classifier

» Support Vector Machines
— A hyperplane-based classification algorithm
— Highly influential

— Backed by solid theoretical grounding (Vapnik &
Cortes, 1995)

— Easy to kernelize



The Maximum Margin Principle

 Find the hyperplane with maximum
separation margin on the training data




Margin of a data set D

margin(D,w,b) = { MNwyepy(w ¥ +b) if wseparates D o
—00 otherwise
Distance between the
hyperplane (w,b) and
the nearest point in D
margin(D) = sup margin(D, w, b) (3.9)

w,b

Largest attainable margin on D



Support Vector Machine (SVM)

A hyperplane based linear classifier defined by w and b
Prediction rule: y = sign(w’x + b)
Given: Training data {(x1,v1),...,(Xn, yn)}

Goal: Learn w and b that achieve the maximum margin



Characterizing the margin

Let's assume the entire training data is correctly classified
by (w,b) that achieve the maximum margin
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o Equivalently, y,(w'x, + b) >1
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The Optimization Problem

Maximizing the margin v = minimizing ||w|| (the norm)

Our optimization problem would be:

2
Minimize f(w,b) = |v;||

subject to  y,(w'x, + b) > 1, n=1,....N




Large Margin = Good Generalization

* Intuitively, large margins mean good
generalization
— Large margin => small ||w(|
— small [|w|| => reqgularized/simple solutions

 (Learning theory gives a more formal
justification)



Solving the SVM Optimization
Problem

Our optimization problem is:

2

Minimize f(w,b) = H“;H
subject to 1 < y,(w'x, + b), n=1...,N
Introducing Lagrange Multipliers a, (n ={1,..., N}), one for each

constraint, leads to the Lagrangian:

[[w]®

N
> + Z an{l — yn(wan + b)}

n=1

Minimize L(w,b,«a) =

subjectto o, >0; n=1,....N




Solving the SVM Optimization
Problem

Take (partial) derivatives of Lp w.r.t. w, b and set them to zero

oL dL N
p | P - B
5 =0=w= 3210” nXn. b = 0= E pyp =0

n=1

Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, «) Zﬂn — — Z OUmOnYmYn(X Xn)

mnl

subject to Z anyn=0, a,=20, n=1,..., N
n=1




Solving the SVM Optimization
Problem

wes of Lp w.r.t. w, b and set them to zero

A Quadratic Program for Olp
which many off-the-shelf a — 0 0
nYnXn, = E QnYn =
2_1 b

solvers exist

Substituting thet the Primal Lagrangian Lp gives the Dual Lagrangian

Maximize Lp(w, b, «) —Zfl’n— — Z afmanymyn(x Xn)

mnl

subject to Zoenyn=01 ap, >0, n=1....N
n=1




SVM: the solution!

Once we have the «a,'s, w and b can be computed as:

N
W = Zn=1 QpnYnXp

1 T T
b=—3 (mm,,:yn:H W' X, + MaXp.y, ——1 W x,,)

Note: Most «,'s in the solution are zero (sparse solution)

@ Reason: Karush-Kuhn-Tucker (KKT) conditions wx+b=1
class +1 () ® //
o For the optimal «a,'s e yreees
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° . [
@ « is non-zero only if x, lies on one of the two ML,
margin boundaries, i.e., for which y,(w'x, + b) =1 ' R e et

@ These examples are called support vectors

@ Support vectors “support” the margin boundaries



SVM in the non-separable case

* no hyperplane can separate the classes perfectly

« We still want to find the max margin hyperplane,
but

— We will allow some training examples to be
misclassified

— We will allow some training examples to fall within
the margin region



SVM in the non-separable case

Recall: For the separable case (training loss = 0), the constraints were:

y,,(wa,, +b)>1 Vn
For the non-separable case, we relax the above constraints as:

y,,(wan +b)>1-&, Vn

¢, is called slack variable (distance x,, goes past the margin boundary)

&, > 0,Vn, misclassification when &, > 1




SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

@ .. but we want their number to be minimized
= by minimizing the sum of slack variables (Zle €n)

The optimization problem for the non-separable case

C hyperparameter dictates which term dominates the minimization

* Small C => prefer large margins and allows more misclassified
examples

* Large C => prefer small number of misclassified examples, but at
the expense of a small margin




Soft SVM

* Same optimization as:

N
- Iwl® ¢
I‘]’ﬂvlil 5 C’z—:lmax{l — Yn(W'X,
n=

Hinge

Why? loss!
o y.

* Have you seen this loss function before?



