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Today’s topics

* Bayes rule review

A probabilistic view of machine learning
— Joint Distributions
— Bayes optimal classifier

e Statistical Estimation
— Maximum likelihood estimates

— Derive relative frequency as the solution to a
constrained optimization problem



Bayes Rule

P(BIA) * P(A) :
P(A|B) = P (B) Bayes' rule

we call P(A) the “prior” ot
Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine

and P(A|B) the “posterior” of chances. Philosophical Transactions of
the Royal Society of London, 53:370-418

...by no means merely a curious speculation in the doctrine of chances,
but necessary to be solved in order to a sure foundation for all our
reasonings concerning past facts, and what is likely to be hereafter....
necessary to be considered by any that would give a clear account of the
strength of analogical or inductive reasoning...



Exercise: Applying Bayes Rule

 Consider the 2 random variables
A = You have covid
B = You just coughed

 Assume

P(A) = 0.05
P(BJA) = 0.8
P(B|not A) = 0.2

. What is P(A|B)?



Using a Joint Distribution
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Given the joint
distribution, we can find
the probability of any
logical expression E
involving these variables

P(E) = EP(row)

rows matching £
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Given the joint distribution,

we can make inferences
— E.g., P(Male|Poor)?
— Or P(Wealth | Gender, Hours)?



Recall: Machine Learning
as Function Approximation

Problem setting

« Set of possible instances X

« Unknown target function f: X —»Y

 Set of function hypotheses H ={h | h: X - Y}

Input

» Training examples {(x™,y®), .. (x™, y"M)} of unknown
target function f

Output
« Hypothesis h € H that best approximates target function f



Recall: Formal Definition of Binary
Classification (from CIML)

TASK: BINARY CLASSIFICATION

Given:
1. An input space X
2. An unknown distribution D over A'x{—1,+1}

Compute: A function f minimizing: [E, ) .p f(x) #y]




The Bayes Optimal Classifier

Assume we know the data generating distribution D

We define the Bayes Optimal classifier as
(BO)( ¢ : v DL D

If we had access to D,
T Finding an optimal classifier would be trivial!

we don’t have accessto D
B So let’s try to estimate it instead!

— Best error rate we can ever hope to achieve under zero/one loss



What does “training” mean in
probabilistic settings?

 Training = estimating D from a finite training set

— We typically assume that D comes from a specific
family of probability distributions

e.g., Bernouilli, Gaussian, etc

— Learning means inferring parameters of that
distributions

e.g., mean and covariance of the Gaussian



Iraining assumption: training
examples are iic

* Independently and Identically
distributed

— i.e. as we draw a sequence of examples from
D, the n-th draw is independent from the
previous n-1 sample

* This assumption is usually false!
— But sufficiently close to true to be useful



How can we estimate the joint probability
distribution from data?

What are the challenges?



Maximum Likelihood Estimation

* Find the parameters that maximize the
probability of the data

» Example: how to model a biased coin?



Maximum Likelihood Estimates

ﬁ Yt Each coin flip yields a Boolean value
23 ) L for X
) S\ GES X ~ Bernouilli: P(X) = 0%(1 — )%
X=1 X=0
PT)%E); )=_1?e Given a data set D of iid flips, which
(Bernoull) ~ contains a; ones and a, zeros

PQ(D) — Hal(l — 9)“0

041

0 = argmaxp Pp(D) =
MLE g 9 Pg(D) o, + ag



Let's learn a classifier
by learning P(Y|X)

» Goal: learn a classifier P(Y|X)

 Prediction:
— Given an example x
— Predict § = argmax, P(Y =y |X = x)



Parameters for P(X,Y) vs. P(Y|X)

Y = Wealth gender hours_worked wealth

X = <Gender, Hours_worked> |Female v0:40.5- poor 0.253122 [
rich  0.0245895 ||}

v1:40.5+ poor 0.0421768 [}
rich  0.0116293 ||

Male  v0:40.5- poor 0.331313 |G
rich  0.0971295 |
v1:40.5+ poor 0.134106 |G
rich  0.105933 |

Joint probability
distribution P(X,Y)

Gender HrsWorked P(rich | GG HW) P(poor | G,HW)

" N F <40.5 09 91
Conditional probability

distribution P(Y|X) F >40.5 21 .79

M <40.5 23 A7

M >40.5 .38 .62




HOow many parameters
do we need to learn?

Suppose X =< X1, X5, ...X; >
where X; and Y are Boolean random variables

Q: How many parameters do we need to estimate
P(Y|Xy, Xy, . Xg)?

A: Too many to estimate P(Y|X) directly from data!



Naive Bayes Assumption

Naive Bayes assumes
P(Xl,Xz, Xdly) — ld:lP(Xi |Y)

..e., that X; and X; are conditionally
independent given Y, forall i # j



Conditional Independence

 Definition:
X is conditionally independent of Y given Z
if P(X]Y,Z) = P(X|Z)

 Recall that X is independent of Y if P(X|Y)=P(Y)



Naive Bayes classifier

y = argmax, P(Y =y|X =x)
= argmax,P(Y = y)P(X =x |V = y)
d
= argmax,P(Y =y) HP(Xi =x; |Y =y
i=1
Bayes rule

+ Conditional independence assumption



How many parameters do we

need to learn?
e To describe P(Y)?

* Todescribe P(X =< X{,X,,...X; >|Y)

— Without conditional independence
assumption?

— With conditional independence assumption?

(Suppose all random variables are Boolean)



Training a Naive Bayes classifier

Let's assume discrete Xi and Y ‘

TrainNaiveBayes (Data) # examples for which Y = y,
# examples

for each value y, of Y

estimate m, = P(Y = yy,)
for each value x;; of X;

estimate 6 = P(X; =x; |Y = yi)

# examples for which X; = x;jand Y =y
# examples for whichY = y;,




Naive Bayes Wrap-up

* An easy to implement classifier, that
performs well in practice

e Subtleties

— Often the Xi are not really conditionally
Independent

— What if the Maximum Likelihood estimate for
P(Xi|Y) is zero?



Logistic Regression

 Binary classification

PY® =11X% 9) = g(< 6, X >)
PY®D =0|X® 9)=1—g(< 0, XD >)

1- —

/ Sigmoid function

0.57”/ 1
9(2)

/ "~ 1+ exp(—2)




Logistic Regression

« Maximum Likelihood
N

(2) ] x (2)
max I[lp(y X 9)
<
max []o(<6,x® SV (1= g(< 0, XO Sy
<

N
max ZY(i) log g(< 0, X =)+ (1 —YD)log(1 — g(< 0, X >))
i=1

Cross-entropy loss function



How to solve it?

Gradient Descent

A good property of sigmoid:
V.9(z) = g(2)(1 — g(2))

SGD: i1 =0p +0(Y' —g(< 6, X" >) XD

Why? Intuition behind the updates



