
Chapter 1

Git

git: ’gud’ is not a git command. See ’git
–help’

Git

1.1 Intro

When you are developing software, keeping track of changes you make can be really help-
ful in debugging and avoiding or minimizing expensive errors (the most expensive is rolling
out a buggy version of a piece of software that costs the company millions every minute
it’s out in the public). Git was created by Linux Torvalds 1 because the proprietary software
they were using for version control stopped support for kernel development after the open
source community tried to reverse engineer it (or so the story goes).

Now Git is the industry standard for version control and is the basis for various other
version control systems. For this course we don’t expect you to know git well, but enough
that you can keep your own version control for your projects as you develop them.

1.2 Brief Overview

Version control is really useful in development because as projects get larger and more
complicated, it becomes helpful to track changes that are made and be able to change
versions quickly (maybe the newest version has bugs so you want to change to a previous
version). Additionally, git allows for parallel development so if you are working on one
thing, and your colleague another, then you don’t have to wait for the other to finish their
job before you can work on yours. This speeds up development.

Here we will o�er a quick surface level overview of how git functions for version control.

1That Linus Torvalds, the one who created the linux kernel

1

2 CHAPTER 1. GIT

1.2.1 Version Control

Version control is really important to help keep track of changes progress is made. To make
this easy, Git will store snapshots of your code and then make a Directed Acyclic Graph
(DAG) of these snapshots. A snapshot is basically a picture of what your work looks like at
some specific time. Then when you put the pictures together in a graph, you can see the
changes happen over time (like any scrapbook or photo album). The process of taking a
snapshot is called committing. Each snapshot has a name so it is very easy to revert changes
by telling git to go to a certain snapshot rather than just holding Ctl+Z until things look right.

This is all you really need when working alone (and if you work linearly). Professionally
however, you will most likely be working with other people. It is also possible you are like
me and work a little bit on a lot of things all at once. Regardless, you need a bit more be-
sides just tracking your changes in these scenarios.

The most important thing to note is that Git is a distributed version control system, that
means there is no central storage space for a code base. So when you are taking snapshots,
they are only visible to you. You also can’t see anyone else’s snapshots. Thus, many people
can be working concurrently on a project which can speed up development. That being said,
there will come a time when you and your friend will need to combine your work to submit
a final product. This process of combining work from multiple DAGs is called merging. A
crude analogy would be that instead of emailing a file back and forth between you and a
friend each making changes until a final version is made, you could each write your own
file and then magically merge your two files together at the end.

1.2.2 Centralizing Git in the cloud

We said Git does not have a central storage system and this is technically correct, but as you
have experienced, services like GitHub or GitLab exist which allow you to host your code in
the cloud and have a central code source. These code sources are called repositories or re-
pos. You can then copy this code to your machine (by cloning or pulling depending on what
exactly you are copying), or copy your code from your machine to the repository (pushing).
Additionally, for some services like GitHub, you can merge directly on the website rather
than locally. This means that besides version control, Git also allows for publishing your
code and putting it out there on the internet.

To allow many people to simultaneously work in the same repo but not step on each
other toes, git allow has the ability to make branches so any changes you make do not
accidentally modify the o�cial version of a program as you develop. A branch is just an
o�shoot of the main branch. If you think about a biological tree, you can think of the o�-
cial version as the trunk and a branch an o�shoot of the trunk. The only di�erence is that
sometimes these branches sometimes circle back around and merge back into the trunk.

You can read more about branching in the documentation on the git website.2 We will
2GitHub documentation

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

1.3. LOCAL DEVELOPMENT 3

only focus on how to commit, clone, push and pull.

1.3 Local Development

To develop locally, you need to first copy code from a repo onto your local machine. This
process is called cloning. I would recommend making your own repo and playing around
there.

If you are using the SSH protocol you can run the following:

g i t clone git@github . com : C l i f f B a k a l i a n / g i t−basics . g i t

When you clone a repository, it creates a directory with the same name as the reposi-
tory. Once you cloned and cd’d into it, I would make a change, the simplest being touch
new_file.

Once you made a change you can now get ready to take a snapshot to begin tracking
changes and version control. To do this you must first tell git what files you want logged as
changed. We do this with the add command.

g i t add new_f i le

You can add individual files or directories. This will move these files into what is called the
staging area. You can see what files changed sine the last snapshot and what files have
been added to the staging area with a ‘git status‘.

Once you have staged everything you want to, you can now take your snapshot with the
commit command.

g i t commit −m "added a new f i l e for t e s t i n g purposes "

The -m flag says to use the proceeding string as the commit message or comment. This
makes it easier to identify all the snapshots. You always need to give a message. If you
don’t, git will prompt you for one.

About the Staging Area

The staging area is the place where the snapshot will be taken. For an extended anal-
ogy: suppose you are a photographer and you need to set a scene. You may have props
made, backgrounds drawn, and people ready to be posed. When you add a file to the stag-
ing area, it’s like you are placing the prop, person, backdrop into the view or frame of the
camera. Now sometimes a prop breaks, or you hire a too many models and you don’t end
up using them all. In this case, you don’t have to add them, even if you did work with them.
Whatever you stage however will be in the shot. Once everything is finalized and you are
ready to hit the shutter, you can finally commit to the picture.

Once you made your commit, you can publish your changes to GitHub for the world to
see, (or if you are using a private repo, just copy it to the cloud). We do this with the push
command.

4 CHAPTER 1. GIT

g i t push

Congrats! You just pushed your first commit!
If you used my repo, you won’t be able to see the changes immediately because you

don’t have write access. Instead something called a pull request (PR) will be made. This
is basically a message that says "Hey, I want to propose these changes". Everyone can see
this message and it can be found on the pull request tab on GitHub. If I wanted to, I can say
"Those changes make my code better, I will accept them" and then accept the PR. Then your
code will be included in the o�cial version that everyone gets when they clone or pull.

Now sometimes repos change due to someone else pushing or because a PR was ac-
cepted. To get their changes (or to update/resynch your local code with GitHub if you are
behind) you can pull the changes to your local machine.

g i t pu l l

Now remember that we wanted to use Git for version control. We can easily change
our code to any snapshot that we have previously taken. We first do this by looking at the
history of all our changes and snapshots:

g i t log

Each snapshot has an ID which is a very long string which was generated by git (with hash-
ing). The message you used for each commit is also listed. You can easily determine which
version you want to change to based o� the commit message (you did use meaningful mes-
sages right?). Once you have the ID of the commit you want to go back to you can revert
to it.

g i t rever t <commit−id >

This will change your directory to this moment in time and make a new snapshot which will
be added to the end of the DAG. If you have any unsaved changes before the revert, you
can decide to save the changes by committing or stashing them (git stash. I would rec-
ommend stashing because the messed up code will still be documented (and you probably
want to keep it for future use). Stashing will save the changes to local memory so it won’t
be logged and is typically either forgotten or overwritten3.

Reverting will keep a history of what you got rid of which is why I recommend it since
it is helpful. However if you need to delete the history, you probably want to do a reset.
Resetting is dangerous and I would only use in emergencies.

3This is actually useful when merging but you don’t have to worry about that for this course

	Git
	Intro
	Brief Overview
	Version Control
	Centralizing Git in the cloud

	Local Development

