
Project 5: GeekOS File System 3

1 Overview

The purpose of this project is to add a writable filesystem, GFS3, to GeekOS. Unlike the existing PFAT, GFS3
includes directories, inodes, direntries, etc. The new filesystem can be bootable, but will for development
reside on the second IDE drive in the emulator. The PFAT drive will continue to hold user programs while
you format and test your implementation of GFS3.

There are two parts to this project (details in section 1.4):

• Part 1: mount and read functions.

• Part 2: write functions.

1.1 VFS Introduction

Since GeekOS will have two types of filesystems (PFAT and GFS3), it will use the virtual filesystem layer
(VFS) to direct requests to an appropriate filesystem (see figure below). We have provided an implementation
of the VFS layer in the file vfs.c. The VFS layer will call the appropriate GFS3 routines when a file operation
refers to a file in GFS3.

The implementation of PFAT is in pfat.c. You will implement GFS3 in gfs3.c and relevant system calls
in syscall.c.

VFS picks the functions to call based on supplied structures containing function pointers, one for each
operation. For example, see Init PFAT in pfat.c: this initializes the PFAT filesystem with VFS by pass-
ing it a pointer to s pfatFilesystemOps, a structure that contains function pointers to PFAT routines for
mounting (and formatting) a filesystem. Other PFAT functions are stored in different structures (e.g., look
at the PFAT Open routine, which passes the gs pfatFileOps structure to VFS). You will analogously use
s gfs3FilesystemOps, s gfs3MountPointOps, s gfs3DirOps, and s gfs3FileOps in gfs3.c. You should also add
a call to Init GFS3 provided in gfs3.c to main.c to register the GFS3 filesystem. In general, use the PFAT
implementation as your guide to interfacing GFS3 with VFS.

1



1.2 GFS3 Filesystem Data

1.2.1 Superblock (gfs3 superblock)

magic: 0x47465333

version: 0x00000100

block_with_inode_zero

number_of_inodes

blocks_per_disk

setupStart setupSize

kernelStart kernelSize

The superblock contains the file system parameters and is used by the kernel to load and interpret the
filesystem. It must be stored at byte offset PFAT BOOT RECORD OFFSET (482) (NOT block offset).
You can expect it to be there on mount. If it’s not there, the file system is broken and would have to be
repaired before being mounted.

You may ignore setupStart, setupSize, kernelStart, and kernelSize, all of which are to support the loading
of the kernel when a GFS3 image is made bootable.

1.2.2 Primitive types

Both primitive types are unsigned integers; the separate data type is meant to ease type checking.

gfs3 blocknum The number of the block (not sector) on disk.

gfs3 inodenum The number of the inode (not the block containing the inode). There are a fixed number
of inodes, and thus possible files and directories, in a given disk image.

1.2.3 Inode (gfs3 inode)

Inodes are data structures that store information about a file or directory on the filesystem. Their structure
in GFS3 is as follows:

file size
four bytes

type
one byte

reference count
one byte

mode
two bytes

extent[0]

start length

extent[1]

start length

extent[2]

start length

File Block 1 File Block 2 File Block 3 File Block 4 File Block 5 File Block 6 File Block 7 File Block 8

The size of the inode is constrained so that an even number of inodes fit into each block (inodes won’t
span blocks). The inode does not identify itself; if you need to manipulate an inode, the number is a necessary
identifier; the cached inode itself will not have enough information to write it back to disk in the right place.

The type can be either:

GFS3 DIRECTORY It’s a directory. It won’t be read or written directly by applications.

GFS3 FILE It’s a file.

The reference count should be zero in an unused inode. The mode specifies permissions and can be
ignored for this project. Each inode stores three extents. This allows the inode to refer to three regions
of blocks that are contiguous. Should an application attempt to extend a file that already uses the three
extents where the last one cannot be extended (that block is in use), your gfs3 implementation will need to
move and coalesce extents to make room.

2



1.2.4 Dirent (gfs3 dirent)

Dirents are data structures used to store the contents of a directory. This is stored in the data blocks of a
GFS3 DIRECTORY’s inode.

inode number
four bytes

entry_size
one byte

name_length
one byte

file or directory name
variable length up to 250

Padding
1 to 3 bytes

inode number
four bytes

entry_size
one byte

name_length
one byte

file or directory name
variable length up to 250

Padding
1 to 3 bytes

Figure caveat: the lengths are sizes, not pointers and the alignment padding isn’t explicit. Figure caveat
2: the entry length of the second dirent will point beyond the end of the second dirent, even if there is
nothing there because that’s the end of the directory. This is explicit in the example below.

Directories are files consisting of appended records of type gfs3 dirent. Note that you will be overflowing
the array to write names of any length; sizeof(struct gfs3 dirent) will very likely confuse. To calculate the
size for a new dirent, round 4 + 2 + name length to the nearest multiple of four. A helper function would
be a good idea here.

Some code for seeking through the list in a directory is in lecture notes: to find an entry, first look for
entries that match the length.

You must support deletion; We covered three obvious ways to remove from the middle of the list without
rewriting the entire directory in class, so I leave it to you to determine.

When creating a directory, it is not entirely empty. Each directory has both ’.’ and ’..’ entries. The root
directory will have contents:

01 00 00 00 04 01 2e 00

01 00 00 00 04 02 2e 2e

If you’re wondering why inode 1 is represented using 01 00 00 00, smack yourself. (LSB.)
I encourage you to not write these 16 bytes, but instead to write a dirent constructor function to use to

build the directory, since that can be reused.

1.2.5 In-use Blocks Bitmap

Track in-use disk blocks using a bit vector. A library called bitset is provided (see bitset.h and bitset.c) that
manages a set of bits and provides functions to find bits that are 0, which correspond to free disk blocks.
(Note that this is the opposite of the textbook, which uses a 1 to indicate a free block).

The in-use disk blocks map is stored within the file system using inode 2.
Note that bitset.h includes a function for finding N consecutive free bits.

1.3 Buffer Cache

The buffer cache allows you to keep recently-accessed blocks in memory for a while (for example, the inode
for a directory), and hold in-progress modifications to blocks until all the writes to that block are done and
can be committed back. This is largely how you will interact with the filesystem in the GeekOS kernel.

Each buffer in the cache has a block number (the backing store block number), the buffer in memory,
and two flags:

in use Don’t touch it, it’s in use. Some thread is reading from it or writing to it. Or it’s going to disk.
The flag is set when you Get FS Buffer(), and cleared when you Release FS Buffer(). (Releasing
doesn’t remove the buffer from cache, it just marks it not in use.) If the flag has been set when
Get FS Buffer() is called, you’ll block, so pretend it is a lock acquisition. If your code appears to hang
while the debugger’s “thread apply all bt” shows no threads running, that indicates deadlock; your
code might have decided to Get FS Buffer() on the same block twice: e.g., to read the in-use blocks
bitmap inode and the root inode, both of which are in the same block.

dirty It has been modified. Mark a buffer dirty using Modify FS Buffer(). The buffer cache will take care
of eventually writing the block back to disk, in whatever order it chooses.

3



Call Create FS Buffer Cache() to make a new buffer cache for the device; it is given a block size (in our
case 512 bytes since we will treat disk sectors as file system blocks) at creation time.

Call Sync FS Buffer() to push back specific blocks, and Sync FS Buffer Cache() to push them all back.
Ideally, one would use Sync FS Buffer for flushing the blocks of a file on close or of filesystem metadata
eagerly. One would use Sync FS Buffer Cache to sync the whole filesystem. (This would be comparable to
the “sync” program that administrators worried about a crash or shutdown invoke.)

There’s a Destroy FS Buffer Cache() function too. I can’t see a purpose to it in this assignment.
The buffer cache must be used to prevent too many reads or writes from hitting the virtual disk device.

The buffer cache must be sync’d as the shell exits before Hardware Shutdown().
Some sample images are at:

• http://www.cs.umd.edu/class/fall2015/cmsc412/gfs3-512k.img.gz - small, empty

• http://www.cs.umd.edu/class/fall2015/cmsc412/gfs3-5M.img.gz - medium, empty

• http://www.cs.umd.edu/class/fall2015/cmsc412/gfs3-10M-tstprep.img.gz - this one should be
prepared for the gfs3tst read tests.

I expect to add more soon, but this should be enough to start with mount and some simple development.

1.4 Part 1: Mount and Read Functions

The mount system call allows you to associate a filesystem with a place in the file name hierarchy. The Mount
call is implemented as part of the VFS code we supply (see Mount function in vfs.c); you will implement
your Init GFS3 function so that VFS’s mount code will call your function GFS3 Mount() in gfs3.c. Among
other things, it must ensure that the filesystem being mounted is GFS3.

Open files are tracked by the kernel using a struct File. Each user space process will have an associated
file descriptor table that records which files the process can currently read and write. A user process can
have up to USER MAX FILES files open at once. The file descriptor table is implemented as a struct
File *file descriptor table[USER MAX FILES] array in struct User Context. Not all the entries in the file
descriptor table are necessarily open files, since usually a process has less than USER MAX FILES files open
at once. If fileList[i] is NULL, it represents a free slot (file descriptor is not used). This descriptor will be
filled out by the code in VFS; e.g., see Open in vfs.h, whose pFile argument is a pointer to a free slot in the
table.

From the list of system calls below, implement all functionality for reading. Open (without the create
option), Open Directory, Close, Read, Readentry, Stat, FStat, Seek. ”All functionality” includes the imple-
mentation of these functions for GFS3 in src/geekos/gfs3.c. (The syscalls are nearly trivial, since most of the
work is done for you in vfs.c, and most are implemented for you. Some implementations may not be correct
for this assignment, since they are based on another file system design having a different specification.)

Ensure Makefile.linux ties the second ide disk to a valid gfs3 filesystem. (Add ”-hdb gfs3-1500k.img” to
the qemu line, for example.)

1.5 Part 2: Write Functions

Implement the rest: the create option to open, delete, write, create directory, sync. Deletion should release
the blocks to be reused by another file.

1.6 New System Calls

You will implement new system calls as described below. The semantics are very similar to the UNIX file
system. Some notes:

• All user-supplied pointers (e.g., strings, buffers) must be checked for validity.

• Some checks are already done by vfs.c.

4

http://www.cs.umd.edu/class/fall2015/cmsc412/gfs3-512k.img.gz
http://www.cs.umd.edu/class/fall2015/cmsc412/gfs3-5M.img.gz
http://www.cs.umd.edu/class/fall2015/cmsc412/gfs3-10M-tstprep.img.gz


Mount Takes a device name (“ide1”) to be mounted at a prefix (“/d”) with a given file system type (“gfs3”).
ENOMEM on a failure to allocate memory. EINVALIDFS if not a gfs3 file system. ENAMETOO-
LONG, ENOFILESYS handled by vfs.

Your GFS3 Mount function should not ”validate” the filesystem settings except for magic and version
fields.

Open Takes a path and a mode, returning a file descriptor. ENOMEM on a failure to allocate memory.
EINVALID if user arguments are incorrect, e.g., bad flags. ENAMETOOLONG if the entire path
is longer than 1024 bytes or any individual label is longer than 252 bytes. EMFILE if no more file
descriptors. ENOTFOUND if the file does not exist and O CREATE was not given, or if the containing
director does not already exist. Use Allocate File in vfs.c to get a File. The permissions values are
flags that may be or’ed together in a call, e.g., (O CREATE — O READ — O WRITE)

Open Directory See Open, except return ENOTDIR if called with the name of a file.

Close EINVALID if fd out of range.

Delete Takes a path. ENOTFOUND if the path is already absent. EACCESS if path is a non-empty
directory. Let “recursive” always be false (I consider recursive file system operations in the kernel to
be an abomination).

Read Acts as unix read(). Returns EACCESS if file was not opened for reading. EINVALID if fd out of
range, ENOMEM if no memory, ENOTFOUND if the file descriptor has not been opened or has been
closed. It’s fine to return fewer bytes than asked for, for example, when near the end of the file. Be
sure to advance the file position.

Read Entry Returns 0 for a valid entry. Returns VFS NO MORE DIR ENTRIES when all entries have
been read. (Note: this return convention (zero on something read) is inconsistent with the convention
for Read (zero on EOF).) Error codes as described for read.

Write Acts as unix write. Error codes as described for Read() above, with obvious edits.

Stat Similar errors as Open (except EMFILE). VFS File Stat is defined in fileio.h

FStat Similar errors as Read, where applicable. FStat fills in the stat structure given a file descriptor rather
than a path name as in Stat.

Seek Similar errors as Read. Acts as unix seek, assuming SEEK SET, that is, an absolute position is the
offset. The behavior of seek() on gfs3 directories shall be undefined; the behavior of readdir after seek
equally undefined. (Undefined means do what you want; I don’t want to specify.)

Create Directory Similar errors as Open. Should NOT create directories recursively; e.g. CreateDirec-
tory(”/d/d1/d2/d3/d4”), should fail if /d/d1/d2/d3 does not exist.

Sync Forces any outstanding operations to be written to disk. That is, flush dirty buffers in the buffer
cache to disk.

Format Do not implement. (Other file systems in 412 may implement Format as a system call, which
permits quick testing but is otherwise atypical.)

2 Testing and Requirements

2.1 Requirements

Here are some must do’s for the project:

• Make sure your Mount() works well, so that we can test your project. If we cannot Mount() a GFS3,
we cannot grade your project. Do not refuse to mount our valid images.

5



• You might also want to mount /d to ide1 automatically in main() to speed up your testing, but the
code you submit should not mount /d automatically.

• You should support arbitrary file sizes.

You do not need to consider: situations where two processes have the same file open, situations where
one process opens the same file twice without closing it in between, or interactions with fork.

2.2 Testing

Finally, in src/user there are some programs that can be used to test your file management system calls:
cp.c, ls.c, mkdir.c, mount.c, gfs3tst.c, touch.c, type.c.

There are other test files; these have not been updated for this file system.
Most of the submit server tests are based on gfs3tst.c. Any point values configured in gfs3tst are not

necessarily used on submit.

2.3 Study questions

Consider the difference between this mini inode and a more realistic inode; what do others maintain, and
why does gfs3 not include it?

Consider the difference between the original unix file system and FFS; in your implementation, how often
do you jump between reading inodes and reading data blocks?

Consider readent (SYS READENTRY); does it make sense to have this be a system call? ”strace ls” on
a linux machine. What system call does it use instead? Check the man page and explain why that’s a better
design.

Using your experience from this project, what does it mean for a filesystem to have been cleanly un-
mounted? How does the kernel know if a filesystem is clean when it is being mounted? What would have to
be added to this project to allow that decision? How would one check and repair GFS3?

6


	Overview
	VFS Introduction
	GFS3 Filesystem Data
	Superblock (gfs3_superblock)
	Primitive types
	Inode (gfs3_inode)
	Dirent (gfs3_dirent)
	In-use Blocks Bitmap

	Buffer Cache
	Part 1: Mount and Read Functions
	Part 2: Write Functions
	New System Calls

	Testing and Requirements
	Requirements
	Testing
	Study questions


