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Supervised Learning

Optimization Landscape of Deep Learning
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Supervised Learning

Generalization in Deep Learning (# required samples for training)

Under fitting in Classification Over fitting in Classification
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Supervised Learning

Effect of depth in deep learning
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Supervised Learning

Adversarial Examples
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Supervised Learning

Interpretability (features and samples)
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Supervised Learning

Bayesian Deep Learning

average loss: 2.650782683524133
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nt Neural Networks: LSTMs
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Unsupervised Learning

Generative Adversarial Networks (GANS)

CelebA dataset

Karras et al. 2017

Formulation, Convergence, Mode-Collapse



Variational AutoEncoders (VAES)
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Unsupervised Learning

Computing distances between distributions: optimal transport
(earth-mover), divergences, etc




Unsupervised Learning

Nonlinear Dimensionality Reduction: TSNE
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Unsupervised Learning

Nonlinear Dimensionality Reduction: Manifold Learning,
Multidimensional Scaling
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Unsupervised Learning

Embeddings: word2vec, graph2seq
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Unsupervised Learning

ing

Graph Cluster

Community Detection,




Unsupervised Learning

Domain adaptation, transfer learning
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Unsupervised Learning

Topic modeling, nonnegative matrix factorization

. D Topic proportions and
Topics ments assignments
gene 8.84
e e Seeking Life’s Bare (Genetic) Necessities
e COLD SPRING Hakbu, New Yol — ive rar all by far opan” wgecialh
'.‘ . “

How oy cones bes o SRS Ny o sargones to the 75,00 1 thw ha
/ SRR | o men ko the paae are vt Sy Andens -
- Jat ireupwrh aee

st g
bere . tvogen o eeancwswah adicaly Unveniny i g
cee

torches eeand ¢ lzin:

=

R

1o

data 8.82
nunber 8.82

'/a:, .ln 12 vvmr.ﬂ::; 1A T
conputer 8.81 1

R

» Each topic is a distribution over words
» Each document is a mixture of corpus-wide topics
» Each word is drawn from one of those topics



Unsupervised Learning

Denoising: outlier detection, etc.




Semi-supervised Learning

Small amount of labelled data+ large amount of unlabeled data
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Reinforcement Learning

Approximate dynamic programming
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Online vs Batch Learning

Online: data becomes available in sequential order
(e.g. stock price prediction)
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Fairness in Machine Learning

Sensitive features correlated with other features

Table 1: ProPublica Analysis of COMPAS Algorithm

White Black
Wrongly Labeled High-Risk 23.5% 44.9%
Wrongly Labeled Low-Risk 47.7% 28.0%

https://www.propublica.org/article/
machine-bias—-risk—assessments—-in-criminal-sentencing



Privacy in Machine Learning

Differential privacy

w/ Alice’s data

w/ fake data 22




