Machine Learning CMSC 422- Project Discussion

Soheil Feizi

University of Maryland Department of Computer Science

Optimization Landscape of Deep Learning

Generalization in Deep Learning (# required samples for training)

Effect of depth in deep learning

Adversarial Examples

Interpretability (features and samples)

low-grade glioma

Bayesian Deep Learning

Recurrent Neural Networks: LSTMs

Generative Adversarial Networks (GANs)

Karras et al. 2017

Formulation, Convergence, Mode-Collapse

Variational AutoEncoders (VAEs)

Computing distances between distributions: optimal transport (earth-mover), divergences, etc

Nonlinear Dimensionality Reduction: TSNE

Nonlinear Dimensionality Reduction: Manifold Learning, Multidimensional Scaling

Embeddings: word2vec, graph2seq

Community Detection, Graph Clustering

Domain adaptation, transfer learning

Topic modeling, nonnegative matrix factorization

- Each topic is a distribution over words
- Each document is a mixture of corpus-wide topics
- Each word is drawn from one of those topics

Denoising: outlier detection, etc.

Semi-supervised Learning

Small amount of labelled data+ large amount of unlabeled data

Reinforcement Learning

Approximate dynamic programming

Online vs Batch Learning

Online: data becomes available in sequential order (e.g. stock price prediction)

Pivotal

Fairness in Machine Learning

Sensitive features correlated with other features

Table 1: ProPublica Analysis of COMPAS Algorithm

	White	Black
Wrongly Labeled High-Risk	23.5%	44.9%
Wrongly Labeled Low-Risk	47.7%	28.0%

https://www.propublica.org/article/ machine-bias-risk-assessments-in-criminal-sentencing

Privacy in Machine Learning

Differential privacy

