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Today’s topics

• Continue Kernel methods

• SVMs



Classifying non-linearly separable data 
with a linear classifier: examples

Non-linearly 
separable data in 1D

Becomes linearly 
separable in new 2D 
space
defined by the 
following mapping:



Classifying non-linearly separable data 
with a linear classifier: examples

Non-linearly 
separable data in 2D

Becomes linearly separable in the 3D space 
defined by the following transformation:



The Kernel Trick

• Rewrite learning algorithms so they only depend on 
dot products between two examples

• Replace dot product                     
by kernel function
which computes the dot product implicitly



Example of Kernel function



Kernels: Formally defined



Kernels: Mercer’s condition

For all square 
integrable functions f

• Can any function be used as a kernel function?
• No! it must satisfy Mercer’s condition.



Kernels: Constructing combinations 
of kernels



Commonly Used Kernel Functions



The Kernel Trick

• Rewrite learning algorithms so they only depend on 
dot products between two examples

• Replace dot product                     
by kernel function
which computes the dot product implicitly



“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron in 
the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using 

dot products between examples



“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector 
w can always be represented as a linear combination of the 
expanded training data”

Proof by induction
(in CIML)



“Kernelizing” the perceptron
• We can use the perceptron representer theorem to compute 

activations as a dot product between examples



“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick!



Kernel Methods

• Goal: keep advantages of linear models, but 
make them capture non-linear patterns in 
data!

• How?
– By mapping data to higher dimensions where it 

exhibits linear patterns
– By rewriting linear models so that the mapping 

never needs to be explicitly computed



Discussion

• Other algorithms can be kernelized:
– See CIML for K-means

• Do Kernels address all the downsides of  
“feature explosion”?
– Helps reduce computation cost during training
– But overfitting remains an issue



What you should know

• Kernel functions
– What they are, why they are useful, how they relate to 

feature combination

• Kernelized perceptron
– You should be able to derive it and implement it



Support Vector 
Machines



Back to linear classification

• So far: we’ve seen that kernels can help capture 
non-linear patterns in data while keeping the 
advantages of a linear classifier

• Support Vector Machines
– A hyperplane-based classification algorithm 
– Highly influential
– Backed by solid theoretical grounding (Vapnik & Cortes, 

1995)
– Easy to kernelize



The Maximum Margin Principle

• Find the hyperplane with maximum 
separation margin on the training data 





Support Vector Machine (SVM)



Characterizing the margin
Let’s assume the entire training data is correctly classified by 
(w,b) that achieve the maximum margin



The Optimization Problem



Large Margin = Good Generalization

• Intuitively, large margins mean good generalization
– Large margin => small ||w||
– small ||w|| => regularized/simple solutions

• (Learning theory gives a more formal justification)



SVM in the non-separable case

• no hyperplane can separate the classes perfectly

• We still want to find the max margin hyperplane, but
– We will allow some training examples to be misclassified
– We will allow some training examples to fall within the 

margin region



SVM in the non-separable case



SVM Optimization Problem

C  hyperparameter dictates which term dominates the minimization
• Small C => prefer large margins and allows more misclassified 

examples
• Large C => prefer small number of misclassified examples, but at 

the expense of a small margin



Soft SVM

• Same optimization as :

• Why?

• Have you seen this loss function before?

Hinge loss!


