
Kernels, SVMs

CMSC 422
SOHEIL FEIZI
sfeizi@cs.umd.edu

Slides adapted from MARINE CARPUAT

mailto:marine@cs.umd.edu

Today’s topics

• Continue Kernel methods

• SVMs

Classifying non-linearly separable data
with a linear classifier: examples

Non-linearly
separable data in 1D

Becomes linearly
separable in new 2D
space
defined by the
following mapping:

Classifying non-linearly separable data
with a linear classifier: examples

Non-linearly
separable data in 2D

Becomes linearly separable in the 3D space
defined by the following transformation:

The Kernel Trick

• Rewrite learning algorithms so they only depend on
dot products between two examples

• Replace dot product
by kernel function
which computes the dot product implicitly

Example of Kernel function

Kernels: Formally defined

Kernels: Mercer’s condition

For all square
integrable functions f

• Can any function be used as a kernel function?
• No! it must satisfy Mercer’s condition.

Kernels: Constructing combinations
of kernels

Commonly Used Kernel Functions

The Kernel Trick

• Rewrite learning algorithms so they only depend on
dot products between two examples

• Replace dot product
by kernel function
which computes the dot product implicitly

“Kernelizing” the perceptron

• Naïve approach: let’s explicitly train a perceptron in
the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm using

dot products between examples

“Kernelizing” the perceptron

• Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight vector
w can always be represented as a linear combination of the
expanded training data”

Proof by induction
(in CIML)

“Kernelizing” the perceptron
• We can use the perceptron representer theorem to compute

activations as a dot product between examples

“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick!

Kernel Methods

• Goal: keep advantages of linear models, but
make them capture non-linear patterns in
data!

• How?
– By mapping data to higher dimensions where it

exhibits linear patterns
– By rewriting linear models so that the mapping

never needs to be explicitly computed

Discussion

• Other algorithms can be kernelized:
– See CIML for K-means

• Do Kernels address all the downsides of
“feature explosion”?
– Helps reduce computation cost during training
– But overfitting remains an issue

What you should know

• Kernel functions
– What they are, why they are useful, how they relate to

feature combination

• Kernelized perceptron
– You should be able to derive it and implement it

Support Vector
Machines

Back to linear classification

• So far: we’ve seen that kernels can help capture
non-linear patterns in data while keeping the
advantages of a linear classifier

• Support Vector Machines
– A hyperplane-based classification algorithm
– Highly influential
– Backed by solid theoretical grounding (Vapnik & Cortes,

1995)
– Easy to kernelize

The Maximum Margin Principle

• Find the hyperplane with maximum
separation margin on the training data

Support Vector Machine (SVM)

Characterizing the margin
Let’s assume the entire training data is correctly classified by
(w,b) that achieve the maximum margin

The Optimization Problem

Large Margin = Good Generalization

• Intuitively, large margins mean good generalization
– Large margin => small ||w||
– small ||w|| => regularized/simple solutions

• (Learning theory gives a more formal justification)

SVM in the non-separable case

• no hyperplane can separate the classes perfectly

• We still want to find the max margin hyperplane, but
– We will allow some training examples to be misclassified
– We will allow some training examples to fall within the

margin region

SVM in the non-separable case

SVM Optimization Problem

C hyperparameter dictates which term dominates the minimization
• Small C => prefer large margins and allows more misclassified

examples
• Large C => prefer small number of misclassified examples, but at

the expense of a small margin

Soft SVM

• Same optimization as :

• Why?

• Have you seen this loss function before?

Hinge loss!

