Kernels, SVMs

CMSC 422 SOHEIL FEIZI <u>sfeizi@cs.umd.edu</u>

Slides adapted from MARINE CARPUAT

Today's topics

• Continue Kernel methods

• SVMs

Classifying non-linearly separable data with a linear classifier: examples

Classifying non-linearly separable data with a linear classifier: examples

Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

$$\mathbf{x} = \{x_1, x_2\} \rightarrow \mathbf{z} = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$

The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples
- Replace dot product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

Example of Kernel function

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

Let's assume we are given a function k (kernel) that takes as inputs **x** and **z**

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^{2}$$

= $(x_{1}z_{1} + x_{2}z_{2})^{2}$
= $x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}x_{2}z_{1}z_{2}$
= $(x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})^{\top}(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})$
= $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$

The above k implicitly defines a mapping ϕ to a higher dimensional space $\phi(\mathbf{x}) = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$

Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ϕ

 ϕ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")

Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in \mathcal{F} space

$$egin{array}{lll} \phi & \colon & \mathcal{X}
ightarrow \mathcal{F} \ k & \colon & \mathcal{X} imes \mathcal{X}
ightarrow \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{ op} \phi(\mathbf{z}) \end{array}$$

 \mathcal{F} needs to be a *vector space* with a *dot product* defined on it Also called a *Hilbert Space*

Kernels: Mercer's condition

- Can *any* function be used as a kernel function?
 - No! it must satisfy Mercer's condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

$$\int d\mathbf{x} \int d\mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z}) > 0$$

For all square integrable functions f

Kernels: Constructing combinations of kernels

Let k_1 , k_2 be two kernel functions then the following are as well

• $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) + k_2(\mathbf{x}, \mathbf{z})$: direct sum

•
$$k(\mathbf{x}, \mathbf{z}) = \alpha k_1(\mathbf{x}, \mathbf{z})$$
: scalar product

• $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})k_2(\mathbf{x}, \mathbf{z})$: direct product

Commonly Used Kernel Functions

Linear (trivial) Kernel:

 $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$ (mapping function ϕ is identity - no mapping) Quadratic Kernel:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^2$

Polynomial Kernel (of degree d):

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^d$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^d$

Radial Basis Function (RBF) Kernel:

$$k(\mathbf{x}, \mathbf{z}) = \exp[-\gamma ||\mathbf{x} - \mathbf{z}||^2]$$

The Kernel Trick

- Rewrite learning algorithms so they only depend on dot products between two examples
- Replace dot product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

 Naïve approach: let's explicitly train a perceptron in the new feature space

Algorithm 28 PERCEPTRONTRAIN(**D**, *MaxIter*) // initialize weights and bias 1: $w \leftarrow 0, b \leftarrow 0$ $_{2}$ for iter = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 3: $a \leftarrow w \cdot \phi(x) + b$ // compute activation for this example 4: if $ya \leq o$ then 5: $w \leftarrow w + y \phi(x)$ // update weights 6: $b \leftarrow b + y$ // update bias 7: end if 8: end for q: Can we apply the Kernel trick? 10° end for Not yet, we need to rewrite the algorithm using 11: return w, bdot products between examples

• Perceptron Representer Theorem

"During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data"

Proof by induction (in CIML)

 We can use the perceptron representer theorem to compute activations as a **dot product** between examples

$$w \cdot \phi(x) + b = \left(\sum_{n} \alpha_{n} \phi(x_{n})\right) \cdot \phi(x) + b \qquad \text{definition of } w$$

$$= \sum_{n} \alpha_{n} \left[\phi(x_{n}) \cdot \phi(x)\right] + b \qquad \text{dot products are linear}$$

$$(9.7)$$

Algorithm 29 KERNELIZEDPERCEPTRONTRAIN(**D**, *MaxIter*)

1: $\boldsymbol{\alpha} \leftarrow \mathbf{0}, b \leftarrow \mathbf{0}$ $_{2}$ for iter = 1 ... MaxIter do for all $(x_n, y_n) \in \mathbf{D}$ do 3: $a \leftarrow \sum_m \alpha_m \phi(\mathbf{x}_m) \cdot \phi(\mathbf{x}_n) + b$ 4: if $y_n a \leq o$ then 5: $\alpha_n \leftarrow \alpha_n + y_n$ 6: $b \leftarrow b + y$ 7: end if 8: end for 9: 10: end for 11: return α , b

// initialize coefficients and bias

// compute activation for this example

// update coefficients // update bias

• Same training algorithm, but doesn't explicitly refers to weights w anymore only depends on dot products between examples

We can apply the kernel trick!

Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!
- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed

Discussion

- Other algorithms can be kernelized:
 - See CIML for K-means
- Do Kernels address all the downsides of "feature explosion"?
 - Helps reduce computation cost during training
 - But overfitting remains an issue

What you should know

- Kernel functions
 - What they are, why they are useful, how they relate to feature combination
- Kernelized perceptron
 - You should be able to derive it and implement it

Support Vector Machines

Back to linear classification

- So far: we've seen that kernels can help capture non-linear patterns in data while keeping the advantages of a linear classifier
- Support Vector Machines
 - A hyperplane-based classification algorithm
 - Highly influential
 - Backed by solid theoretical grounding (Vapnik & Cortes, 1995)
 - Easy to kernelize

The Maximum Margin Principle

• Find the hyperplane with maximum separation margin on the training data

Margin of a data set D

$$margin(\mathbf{D}, w, b) = \begin{cases} \min_{(x,y)\in\mathbf{D}} y(w \cdot x + b) & \text{if } w \text{ separates } \mathbf{D} \\ -\infty & \text{otherwise} \end{cases}$$
(3.8)
Distance between the hyperplane (w,b) and the nearest point in D

(3.9)

$$margin(\mathbf{D}) = \sup_{w,b} margin(\mathbf{D}, w, b)$$

Largest attainable margin on D

Support Vector Machine (SVM)

- A hyperplane based linear classifier defined by **w** and b Prediction rule: $y = sign(\mathbf{w}^T \mathbf{x} + b)$
- **Given:** Training data $\{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$

Goal: Learn w and b that achieve the maximum margin

Characterizing the margin

Let's assume the entire training data is correctly classified by (**w**,b) that achieve the maximum margin

- Assume the hyperplane is such that
 - $\mathbf{w}^T \mathbf{x}_n + b \geq 1$ for $y_n = +1$
 - $\mathbf{w}^T \mathbf{x}_n + b \leq -1$ for $y_n = -1$
 - Equivalently, $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1$ $\Rightarrow \min_{1 \le n \le N} |\mathbf{w}^T \mathbf{x}_n + b| = 1$
 - The hyperplane's margin:

$$\gamma = \min_{1 \le n \le N} \frac{|\mathbf{w}^T \mathbf{x}_n + b|}{||\mathbf{w}||} = \frac{1}{||\mathbf{w}||}$$

The Optimization Problem

We want to maximize the margin $\gamma = \frac{1}{||\mathbf{w}||}$

Maximizing the margin $\gamma = \text{minimizing} ||\mathbf{w}||$ (the norm) Our optimization problem would be:

Large Margin = Good Generalization

• Intuitively, large margins mean good generalization

- Large margin => small ||w||

- small ||w|| => regularized/simple solutions
- (Learning theory gives a more formal justification)

SVM in the non-separable case

- no hyperplane can separate the classes perfectly
- We still want to find the max margin hyperplane, but
 - We will allow some training examples to be misclassified
 - We will allow some training examples to fall within the margin region

SVM in the non-separable case

Recall: For the separable case (training loss = 0), the constraints were:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b)\geq 1 \quad \forall n$$

For the non-separable case, we relax the above constraints as:

$$y_n(\mathbf{w}^T\mathbf{x}_n+b) \geq 1-\boldsymbol{\xi}_n \quad \forall n$$

 ξ_n is called slack variable (distance \mathbf{x}_n goes past the margin boundary) $\xi_n \ge 0, \forall n$, misclassification when $\xi_n > 1$

SVM Optimization Problem

Non-separable case: We will allow misclassified training examples

- .. but we want their number to be minimized
 - \Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_n\right)$

The optimization problem for the non-separable case

Minimize
$$f(\mathbf{w}, b) = \frac{||\mathbf{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

- C hyperparameter dictates which term dominates the minimization
- Small C => prefer large margins and allows more misclassified examples
- Large C => prefer small number of misclassified examples, but at the expense of a small margin

Soft SVM

• Same optimization as :

- Why?
- Have you seen this loss function before?