Kernels

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

Today's topics

Kernel methods

"Kernelizing" the perceptron

Beyond linear classification

- Problem: linear classifiers
 - Easy to implement and easy to optimize
 - But limited to linear decision boundaries

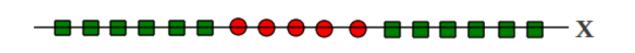
- What can we do about it?
 - Neural networks
 - Very expressive but harder to optimize (non-convex objective)
 - Today: Kernels

Kernel Methods

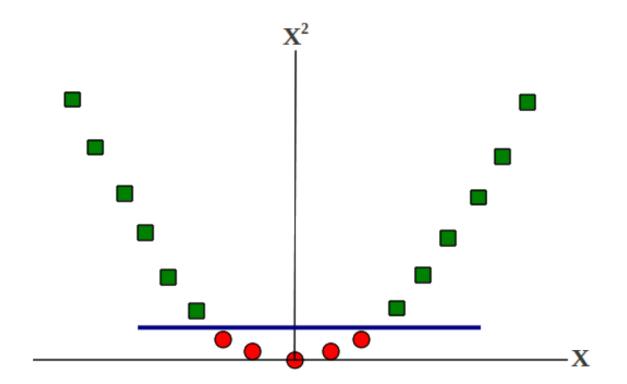
 Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

- How?
 - By mapping data to higher dimensions where it exhibits linear patterns

Classifying non-linearly separable data with a linear classifier: examples



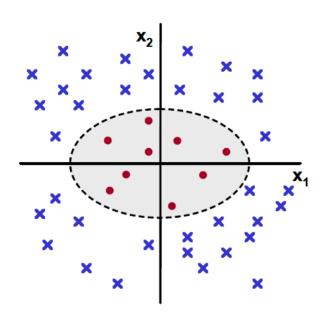
Non-linearly separable data in 1D



Becomes linearly separable in new 2D space defined by the following mapping:

$$x \to \{x, x^2\}$$

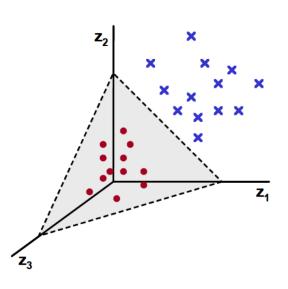
Classifying non-linearly separable data with a linear classifier: examples



Non-linearly separable data in 2D

Becomes linearly separable in the 3D space defined by the following transformation:

$$\mathbf{x} = \{x_1, x_2\} \rightarrow \mathbf{z} = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$



Defining feature mappings

• Map an original feature vector $m{x} = \langle x_1, x_2, x_3, \dots, x_D
angle$ to an expanded version $m{\phi}(m{x})$

Example: quadratic feature mapping represents feature combinations

$$\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \dots, 2x_D, \\ x_1^2, x_1 x_2, x_1 x_3, \dots, x_1 x_D, \\ x_2 x_1, x_2^2, x_2 x_3, \dots, x_2 x_D, \\ x_3 x_1, x_3 x_2, x_3^2, \dots, x_2 x_D, \\ \dots, \\ x_D x_1, x_D x_2, x_D x_3, \dots, x_D^2 \rangle$$

Feature Mappings

 Pros: can help turn non-linear classification problem into linear problem

- Cons: "feature explosion" creates issues when training linear classifier in new feature space
 - More computationally expensive to train
 - More training examples needed to avoid overfitting

Kernel Methods

 Goal: keep advantages of linear models, but make them capture non-linear patterns in data!

How?

- By mapping data to higher dimensions where it exhibits linear patterns
- By rewriting linear models so that the mapping never needs to be explicitly computed

The Kernel Trick

 Rewrite learning algorithms so they only depend on dot products between two examples

• Replace dot product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

Example of Kernel function

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$ Let's assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^{2}$$

$$= (x_{1}z_{1} + x_{2}z_{2})^{2}$$

$$= x_{1}^{2}z_{1}^{2} + x_{2}^{2}z_{2}^{2} + 2x_{1}x_{2}z_{1}z_{2}$$

$$= (x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})^{\top}(z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})$$

$$= \phi(\mathbf{x})^{\top} \phi(\mathbf{z})$$

The above k implicitly defines a mapping ϕ to a higher dimensional space

$$\phi(\mathbf{x}) = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$

Another example of Kernel Function (from CIML)

$$\phi(x) = \langle 1, 2x_1, 2x_2, 2x_3, \dots, 2x_D, \\ x_1^2, x_1x_2, x_1x_3, \dots, x_1x_D, \\ x_2x_1, x_2^2, x_2x_3, \dots, x_2x_D, \\ x_3x_1, x_3x_2, x_3^2, \dots, x_2x_D, \\ \dots, \\ x_Dx_1, x_Dx_2, x_Dx_3, \dots, x_D^2 \rangle$$

What is the function k(x,z) that can implicitly compute the dot product $\phi(x) \cdot \phi(z)$?

$$\phi(x) \cdot \phi(z) = 1 + x_1 z_1 + x_2 z_2 + \dots + x_D z_D + x_1^2 z_1^2 + \dots + x_1 x_D z_1 z_D + \dots + x_D x_1 z_D z_1 + x_D x_2 z_D z_2 + \dots + x_D^2 z_D^2$$

$$= 1 + 2 \sum_{d} x_d z_d + \sum_{d} \sum_{e} x_d x_e z_d z_e$$

$$= 1 + 2 x \cdot z + (x \cdot z)^2$$

$$= (1 + x \cdot z)^2$$

$$(9.4)$$

$$= (9.5)$$

Kernels: Formally defined

Recall: Each kernel k has an associated feature mapping ϕ

 ϕ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")

Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in \mathcal{F} space

$$\phi$$
 : $\mathcal{X} \to \mathcal{F}$

$$k : \mathcal{X} \times \mathcal{X} o \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{\top} \phi(\mathbf{z})$$

 ${\cal F}$ needs to be a *vector space* with a *dot product* defined on it

Also called a *Hilbert Space*

Kernels: Mercer's condition

- Can any function be used as a kernel function?
 - No! it must satisfy Mercer's condition.

For k to be a kernel function

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
- The above is true if K is a positive definite function

$$\int d\mathbf{x} \int d\mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z}) > 0$$
 For all square integrable functions f

Kernels: Constructing combinations of kernels

Let k_1 , k_2 be two kernel functions then the following are as well

- $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z}) + k_2(\mathbf{x}, \mathbf{z})$: direct sum
- $k(\mathbf{x}, \mathbf{z}) = \alpha k_1(\mathbf{x}, \mathbf{z})$: scalar product
- $k(\mathbf{x}, \mathbf{z}) = k_1(\mathbf{x}, \mathbf{z})k_2(\mathbf{x}, \mathbf{z})$: direct product

Commonly Used Kernel Functions

Linear (trivial) Kernel:

 $k(\mathbf{x}, \mathbf{z}) = \mathbf{x}^{\top} \mathbf{z}$ (mapping function ϕ is identity - no mapping)

Quadratic Kernel:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^2$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^2$

Polynomial Kernel (of degree d):

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^{\top} \mathbf{z})^d$$
 or $(1 + \mathbf{x}^{\top} \mathbf{z})^d$

Radial Basis Function (RBF) Kernel:

$$k(\mathbf{x}, \mathbf{z}) = \exp[-\gamma ||\mathbf{x} - \mathbf{z}||^2]$$

The Kernel Trick

 Rewrite learning algorithms so they only depend on dot products between two examples

• Replace dot product $\phi(\mathbf{x})^{\top}\phi(\mathbf{z})$ by **kernel function** $k(\mathbf{x}, \mathbf{z})$ which computes the dot product **implicitly**

 Naïve approach: let's explicitly train a perceptron in the new feature space

Algorithm 28 PerceptronTrain(D, MaxIter)

end for

return w, b

10: end for

```
## Initialize weights and bias

## Initialize weights and bia
```

Can we apply the Kernel trick?

Not yet, we need to rewrite the algorithm using dot products between examples

Perceptron Representer Theorem

"During a run of the perceptron algorithm, the weight vector w can always be represented as a linear combination of the expanded training data"

Proof by induction (in CIML)

 We can use the perceptron representer theorem to compute activations as a dot product between examples

$$w \cdot \phi(x) + b = \left(\sum_{n} \alpha_{n} \phi(x_{n})\right) \cdot \phi(x) + b$$
 definition of w

$$= \sum_{n} \alpha_{n} \left[\phi(x_{n}) \cdot \phi(x)\right] + b$$
 dot products are linear
$$(9.6)$$

Algorithm 29 KernelizedPerceptronTrain(D, MaxIter)

10: end for

11: return α , b

```
1: \alpha \leftarrow 0, b \leftarrow o  // initialize coefficients and bias

2: for iter = 1 \dots MaxIter do

3: for all (x_n, y_n) \in \mathbf{D} do

4: a \leftarrow \sum_m \alpha_m \phi(x_m) \cdot \phi(x_n) + b  // compute activation for this example

5: if y_n a \leq o then

6: \alpha_n \leftarrow \alpha_n + y_n  // update coefficients

7: b \leftarrow b + y  // update bias

8: end if

9: end for • Same training algorithm, but
```

- Same training algorithm, but doesn't explicitly refers to weights w anymore only depends on dot products between examples
- We can apply the kernel trick!

Kernel Methods

- Goal: keep advantages of linear models, but make them capture non-linear patterns in data!
- How?
 - By mapping data to higher dimensions where it exhibits linear patterns
 - By rewriting linear models so that the mapping never needs to be explicitly computed

Discussion

- Other algorithms can be kernelized:
 - See CIML for K-means

- Do Kernels address all the downsides of "feature explosion"?
 - Helps reduce computation cost during training
 - But overfitting remains an issue

What you should know

- Kernel functions
 - What they are, why they are useful, how they relate to feature combination

- Kernelized perceptron
 - You should be able to derive it and implement it