PCA II

CMSC 422
SOHEIL FEIZI

sfeizi@cs.umd.edu

Today's topics

- PCA
- $2^{\text {nd }}$ programming assignment posted

Unsupervised Learning

- Discovering hidden structure in data
- What algorithms do we know for unsupervised learning?
- K-Means Clustering
- Today: how can we learn better representations of our data points?

Dimensionality Reduction

- Goal: extract hidden lower-dimensional structure from high dimensional datasets
- Why?
- To visualize data more easily
- To remove noise in data
- To lower resource requirements for storing/processing data
- To improve classification/clustering
- Linear algebra review:
- Matrix decomposition with eigenvectors and eigenvalues

Principal Component Analysis

- Goal: Find a projection of the data onto directions that maximize variance of the original data set
- Intuition: those are directions in which most information is encoded
- Definition: Principal Components are orthogonal directions that capture most of the variance in the data

PCA: finding principal components

- $1^{\text {st }} \mathrm{PC}$
- Projection of data points along $1^{\text {st }}$ PC discriminates data most along any one direction
- $2^{\text {nd }} P C$
- next orthogonal direction of greatest variability
- And so on...

Examples of data points in D dimensional space that can be effectively represented in a ddimensional subspace ($\mathrm{d}<\mathrm{D}$)

PCA: notation

- Data points
- Represented by matrix X of size $N x D$
- Let's assume data is centered
- Principal components are d vectors: $v_{1}, v_{2}, \ldots v_{d}$

$$
v_{i} \cdot v_{j}=0, i \neq j \text { and } v_{i} \cdot v_{i}=1
$$

- The sample variance data projected on vector v is

$$
\sum_{i=1}^{n}\left(x_{i}^{T} v\right)^{2}=(X v)^{T}(X v)
$$

PCA formally

- Finding vector that maximizes sample variance of projected data:
$\operatorname{argmax}_{v} v^{T} X^{T} X v$ such that $v^{T} v=1$
- A constrained optimization problem
- Lagrangian folds constraint into objective: $\operatorname{argmax}_{v} v^{T} X^{T} X v-\lambda\left(v^{T} v-1\right)$
- Solutions are vectors v such that $X^{T} X v=\lambda v$
- i.e. eigenvectors of $X^{T} X$ (sample covariance matrix)

PCA formally

- The eigenvalue λ denotes the amount of variability captured along dimension v
- Sample variance of projection $v^{T} X^{T} X v=\lambda$
- If we rank eigenvalues from large to small
- The $1^{\text {st }} \mathrm{PC}$ is the eigenvector of $X^{T} X$ associated with largest eigenvalue
- The $2^{\text {nd }} \mathrm{PC}$ is the eigenvector of $X^{T} X$ associated with $2^{\text {nd }}$ largest eigenvalue

Alternative interpretation of PCA

- PCA finds vectors v such that projection on to these vectors minimizes reconstruction error

$$
\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\left(\mathbf{v}^{T} \mathbf{x}_{i}\right) \mathbf{v}\right\|^{2}
$$

Resulting PCA algorithm

Algorithm 36 PCA(D, K)

: $\mu \leftarrow \operatorname{mean}(\mathbf{X})$
// compute data mean for centering
2: $\mathbf{D} \leftarrow\left(\mathbf{X}-\boldsymbol{\mu} \mathbf{1}^{\top}\right)^{\top}\left(\mathbf{X}-\boldsymbol{\mu} \mathbf{1}^{\top}\right) \quad / /$ compute covariance, $\mathbf{1}$ is a vector of ones
3: $\left\{\lambda_{k}, \boldsymbol{u}_{k}\right\} \leftarrow$ top K eigenvalues/eigenvectors of \mathbf{D}
4. return $(\mathbf{X}-\boldsymbol{\mu} \mathbf{1}) \mathbf{U}$

How to choose the hyperparameter K?

- i.e. the number of dimensions

- We can ignore the components of smaller significance

An example: Eigenfaces

PCA pros and cons

- Pros
- Eigenvector method
- No tuning of the parameters
- No local optima
- Cons
- Only based on covariance (2 $2^{\text {nd }}$ order statistics)
- Limited to linear projections

What you should know

- Principal Components Analysis
- Goal: Find a projection of the data onto directions that maximize variance of the original data set
- PCA optimization objectives and resulting algorithm
- Why this is useful!

