A Probabilistic View of Machine Learning, Logistic Regression

CMSC 422

SOHEIL FEIZI

sfeizi@cs.umd.edu

Today's topics

Review Bayes rule

Review Naïve Bayes

Logistic Regression

Bayes Rule

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$
 Bayes' rule

we call P(A) the "prior"

and P(A|B) the "posterior"

Bayes, Thomas (1763) An essay towards solving a problem in the doctrine of chances. *Philosophical Transactions of the Royal Society of London*, **53:370-418**

...by no means merely a curious speculation in the doctrine of chances, but necessary to be solved in order to a sure foundation for all our reasonings concerning past facts, and what is likely to be hereafter.... necessary to be considered by any that would give a clear account of the strength of *analogical* or *inductive reasoning*...

Exercise: Applying Bayes Rule

Consider the 2 random variables

```
A = You have the flu
```

B = You just coughed

Assume

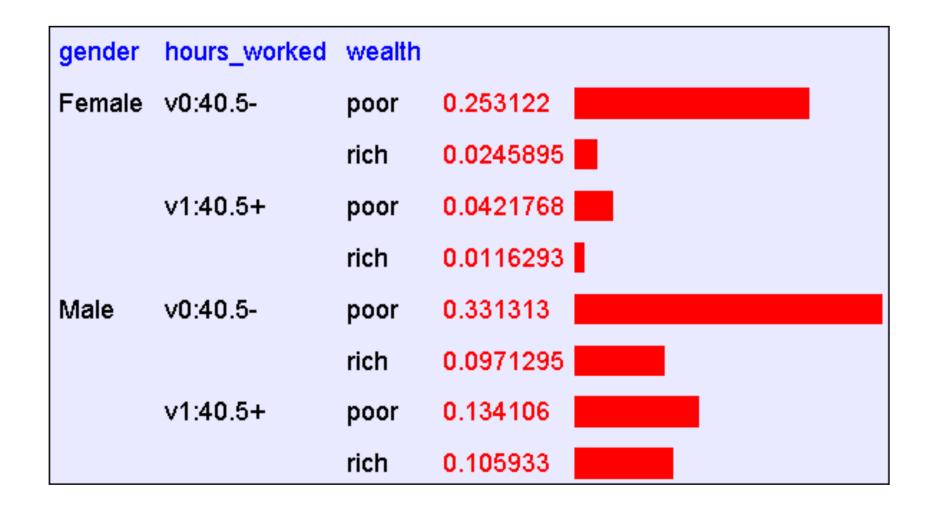
$$P(A) = 0.05$$

$$P(B|A) = 0.8$$

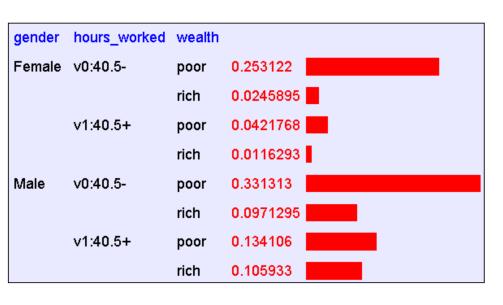
$$P(B | not A) = 0.2$$

What is P(A|B)?

Using a Joint Distribution



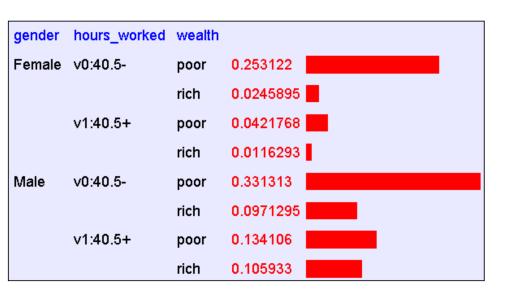
Using a Joint Distribution



 Given the joint distribution, we can find the probability of any logical expression E involving these variables

$$P(E) = \sum_{\text{rows matching } E} P(\text{row})$$

Using a Joint Distribution



Given the joint distribution, we can make inferences

- E.g., P(Male|Poor)?
- Or P(Wealth | Gender, Hours)?

Recall: Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \to Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)},y^{(1)}),...(x^{(N)},y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Recall: Formal Definition of Binary Classification (from CIML)

TASK: BINARY CLASSIFICATION

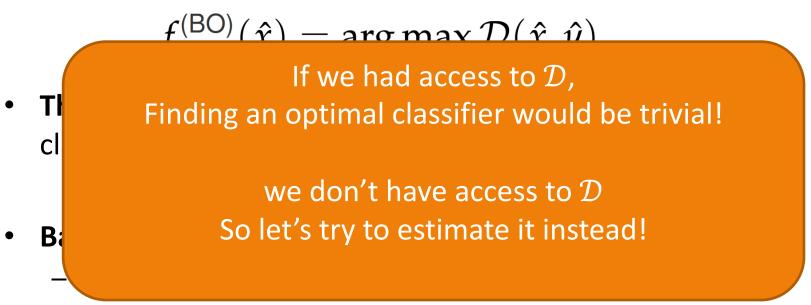
Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

The Bayes Optimal Classifier

- Assume we know the data generating distribution ${\mathcal D}$
- We define the Bayes Optimal classifier as



Best error rate we can ever hope to achieve under zero/one loss

What does "training" mean in probabilistic settings?

- Training = estimating \mathcal{D} from a finite training set
 - We typically assume that $\mathcal D$ comes from a specific family of probability distributions
 - e.g., Bernouilli, Gaussian, etc
 - Learning means inferring parameters of that distributions
 e.g., mean and covariance of the Gaussian

Training assumption: training examples are iid

- Independently and Identically distributed
 - i.e. as we draw a sequence of examples from \mathcal{D} , the n-th draw is independent from the previous n-1 sample

- This assumption is usually false!
 - But sufficiently close to true to be useful

How can we estimate the joint probability distribution from data?

What are the challenges?

Maximum Likelihood Estimation

Find the parameters that maximize the probability of the data

Example: how to model a biased coin?

Maximum Likelihood Estimates

$$X=1$$
 $X=0$
 $P(X=1) = \theta$
 $P(X=0) = 1-\theta$
(Bernoulli)

Each coin flip yields a Boolean value for X

$$X \sim \text{Bernouilli: } P(X) = \theta^X (1 - \theta)^X$$

Given a data set D of iid flips, which contains α_1 ones and α_0 zeros $P_{\theta}(D) = \theta^{\alpha_1} (1 - \theta)^{\alpha_0}$

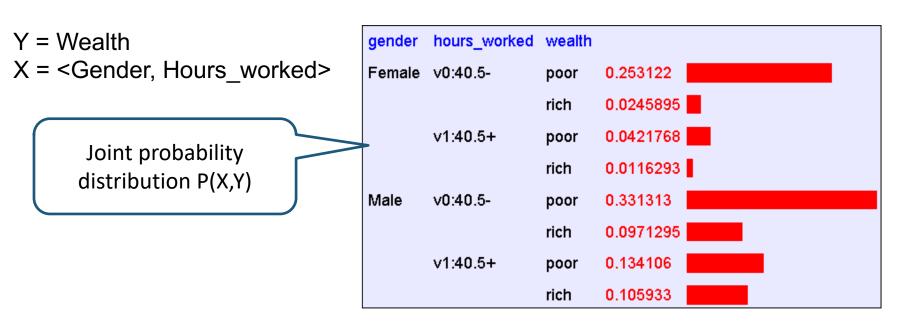
$$\hat{\theta}_{MLE} = argmax_{\theta} P_{\theta}(D) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Let's learn a classifier by learning P(Y|X)

Goal: learn a classifier P(Y|X)

- Prediction:
 - Given an example x
 - Predict $\hat{y} = argmax_y P(Y = y | X = x)$

Parameters for P(X,Y) vs. P(Y|X)



Conditional probability distribution P(Y|X)

Gender	HrsWorked	P(rich G,HW)	P(poor G,HW)
F	<40.5	.09	.91
F	>40.5	.21	.79
М	<40.5	.23	.77
М	>40.5	.38	.62

How many parameters do we need to learn?

Suppose $X = \langle X_1, X_2, ... X_d \rangle$ where X_i and Y are Boolean random variables

Q: How many parameters do we need to estimate $P(Y|X_1, X_2, ... X_d)$?

A: Too many to estimate P(Y|X) directly from data!

Naïve Bayes Assumption

Naïve Bayes assumes

$$P(X_1, X_2, ... X_d | Y) = \prod_{i=1}^d P(X_i | Y)$$

i.e., that X_i and X_j are **conditionally** independent given Y, for all $i \neq j$

Conditional Independence

• Definition:

X is conditionally independent of Y given Z if P(X|Y,Z) = P(X|Z)

Recall that X is independent of Y if P(X|Y)=P(Y)

Naïve Bayes classifier

$$\hat{y} = argmax_y P(Y = y | X = x)$$

$$= argmax_y P(Y = y) P(X = x | Y = y)$$

$$= argmax_y P(Y = y) \prod_{i=1}^{d} P(X_i = x_i | Y = y)$$

Bayes rule

+ Conditional independence assumption

How many parameters do we need to learn?

To describe P(Y)?

- To describe $P(X = < X_1, X_2, ... X_d > | Y)$
 - Without conditional independence assumption?2(2^d-1)
 - With conditional independence assumption?

(Suppose all random variables are Boolean)

Training a Naïve Bayes classifier

Let's assume discrete Xi and Y

examples for which $Y = y_k$

examples

TrainNaïveBayes (Data)

for each value y_k of Y

estimate $\pi_k = P(Y = y_k)$

for each value x_{ij} of X_i

estimate
$$\theta_{ijk} = P(X_i = x_{ij} | Y = y_k)$$

 $\frac{\# \ examples \ for \ which \ X_i = x_{ij} \ and \ Y = y_k}{\# \ examples \ for \ which \ Y = y_k}$

Naïve Bayes Wrap-up

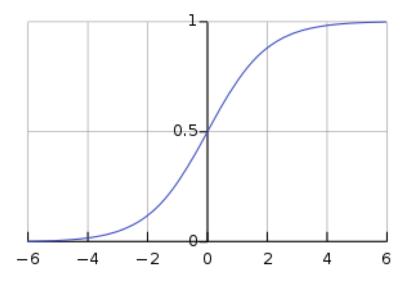
An easy to implement classifier, that performs well in practice

- Subtleties
 - Often the Xi are not really conditionally independent
 - What if the Maximum Likelihood estimate for P(Xi|Y) is zero?

Logistic Regression

Binary classification

$$P(Y^{(i)} = 1 | X^{(i)}, \theta) = g(\langle \theta, X^{(i)} \rangle)$$
$$P(Y^{(i)} = 0 | X^{(i)}, \theta) = 1 - g(\langle \theta, X^{(i)} \rangle)$$



Sigmoid function

$$g(z) = \frac{1}{1 + \exp(-z)}$$

Logistic Regression

Maximum Likelihood

$$\max_{\theta} \prod_{i=1}^{N} P(Y^{(i)}|X^{(i)}, \theta)$$

$$\max_{\theta} \prod_{i=1}^{N} g(<\theta, X^{(i)}>)^{Y^{(i)}} (1 - g(<\theta, X^{(i)}>))^{1 - Y^{(i)}}$$

$$\max_{\theta} \sum_{i=1}^{N} Y^{(i)} \log g(<\theta, X^{(i)}>) + (1 - Y^{(i)}) \log (1 - g(<\theta, X^{(i)}>))$$

Cross-entropy loss function

How to solve it?

Gradient Descent

A good property of sigmoid:

$$\nabla_z g(z) = g(z)(1 - g(z))$$

• SGD: $\theta_{k+1} = \theta_k + \eta(Y^i - g(<\theta, X^i>))X^{(i)}$

Why? Intuition behind the updates