The Perceptron

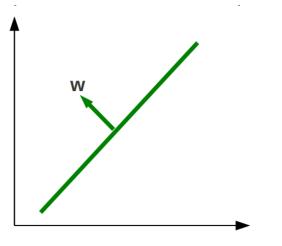
CMSC 422 SOHEIL FEIZI <u>sfeizi@cs.umd.edu</u>

Slides adapted from MARINE CARPUAT

This week

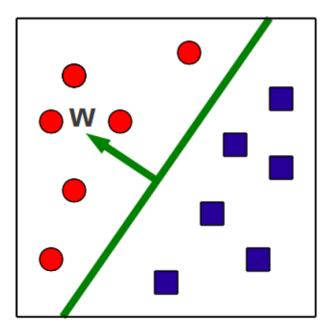
- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
- HW3 will be posted this week.

Geometry concept: Hyperplane



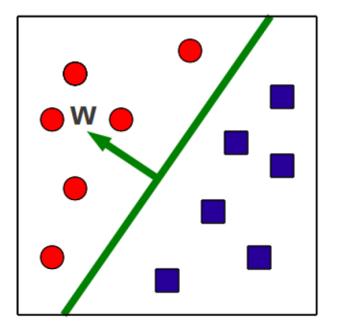
- Separates a D-dimensional space into two half-spaces
- Defined by an outward pointing normal vector $w \in \mathbb{R}^D$
 - *w* is **orthogonal** to any vector
 lying on the hyperplane
- Hyperplane passes through the origin, unless we also define a bias term b

Binary classification via hyperplanes



- Let's assume that the decision boundary is a hyperplane
- Then, training consists in finding a hyperplane w that separates positive from negative examples

Binary classification via hyperplanes



 At test time, we check on what side of the hyperplane examples fall

$$\hat{y} = sign(w^T x + b)$$

Function Approximation with Perceptron

Problem setting

- Set of possible instances X
 - Each instance $x \in X$ is a feature vector $x = [x_1, ..., x_D]$
- Unknown target function $f: X \rightarrow Y$
 - Y is binary valued {-1; +1}
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$
 - Each hypothesis h is a hyperplane in D-dimensional space

Input

• Training examples { ($x^{(1)}, y^{(1)}$), ... ($x^{(N)}, y^{(N)}$) } of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

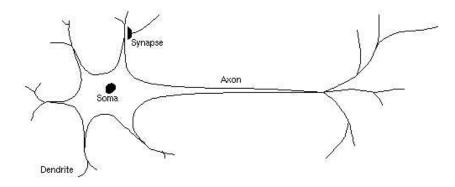
Perception: Prediction Algorithm

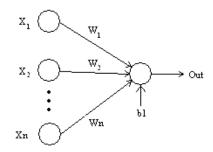
Algorithm 6 PERCEPTRONTEST $(w_0, w_1, \ldots, w_D, b, \hat{x})$

 $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ 2: return sign(a)

// compute activation for the test example

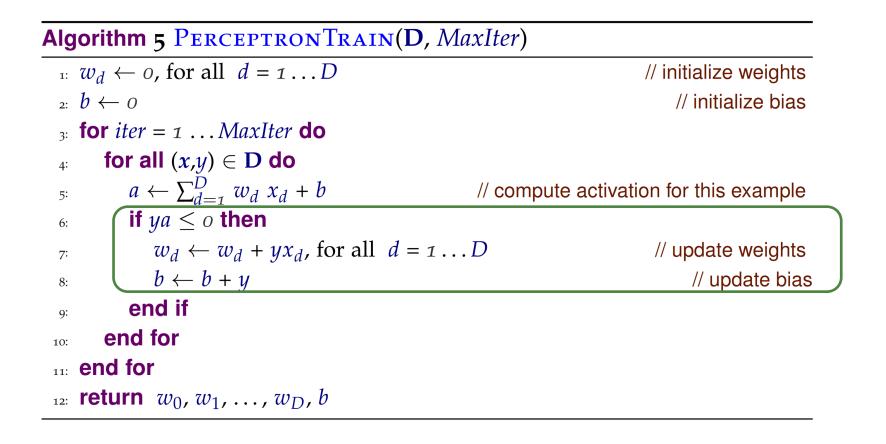
Aside: biological inspiration





Analogy: the perceptron as a neuron

Perceptron Training Algorithm

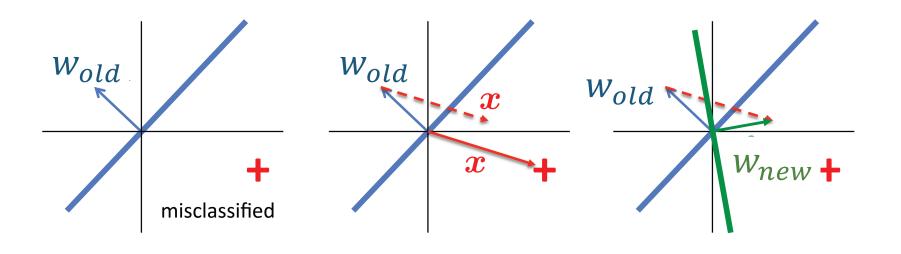


Properties of the Perceptron training algorithm

Online

- We look at one example at a time, and update the model as soon as we make an error
- As opposed to batch algorithms that update parameters after seeing the entire training set
- Error-driven
 - We only update parameters/model if we make an error

Perceptron update: geometric interpretation



Practical considerations

- The order of training examples matters!
 Random is better
- Early stopping
 - Good strategy to avoid overfitting
- Simple modifications dramatically improve performance
 - voting or averaging

Standard Perceptron: predict based on final parameters

Algorithm 5 PERCEPTRONTRAIN(**D**, *MaxIter*) 1: $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights 2: $b \leftarrow 0$ // initialize bias $_{3:}$ for *iter* = 1 ... *MaxIter* do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if 9: end for 10: TT: end for ^{12:} **return** w_0, w_1, \ldots, w_D, b

Predict based on final + intermediate parameters

• The voted perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)}\operatorname{sign}\left(\boldsymbol{w}^{(k)}\cdot\hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

• The averaged perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(\mathsf{k})} \left(\boldsymbol{w}^{(\mathsf{k})} \cdot \hat{\boldsymbol{x}} + b^{(\mathsf{k})}\right)\right)$$

 Require keeping track of "survival time" of weight vectors c⁽¹⁾,...,c^(K)

Averaged perceptron decision rule

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)} \right) \right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} \boldsymbol{b}^{(k)}\right)$$

Can the perceptron always find a hyperplane to separate positive from negative examples?

This week

- A new model/algorithm
 - the perceptron
 - and its variants: voted, averaged
- Fundamental Machine Learning Concepts
 - Online vs. batch learning
 - Error-driven learning
- HW3 coming soon!