K-Means: an example of unsupervised learning

CMSC 422

SOHEIL FEIZI sfeizi@cs.umd.edu

Slides adapted from SAMUEL DOOLEY and MARINE CARPUAT

Recap

- Decision Trees
 - Top-down induction to minimize classification error
- Nearest Neighbors (NN) algorithms for classification
 - K-NN, Epsilon ball NN
 - Take a geometric view of learning
- Fundamental Machine Learning Concepts
 - Decision boundary
 - Visualizes predictions over entire feature space
 - Characterizes complexity of learned model

Exercise: When are DT vs kNN appropriate?

Properties of classification problem	Can Decision Trees handle them?	Can K-NN handle them?
Binary features		
Numeric features		
Categorical features		
Robust to noisy training examples		
Fast classification is crucial		
Many irrelevant features		
Relevant features have very different scale		

Exercise: When are DT vs kNN appropriate?

Properties of classification problem	Can Decision Trees handle them?	Can K-NN handle them?
Binary features	yes	yes
Numeric features	yes	yes
Categorical features	yes	yes
Robust to noisy training examples	no (for default algorithm)	yes (when k > 1)
Fast classification is crucial	yes	no
Many irrelevant features	yes	no
Relevant features have very different scale	yes	no

Today's Topics

- A new algorithm
 K-Means Clustering
- Fundamental Machine Learning Concepts
 Unsupervised vs. supervised learning

Supervised Machine Learning as Function Approximation

Problem setting

- Set of possible instances X
- Unknown target function $f: X \rightarrow Y$
- Set of function hypotheses $H = \{h \mid h: X \rightarrow Y\}$

Input

• Training examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$ of unknown target function f

Output

• Hypothesis $h \in H$ that best approximates target function f

Supervised vs. unsupervised learning

- Clustering is an example of unsupervised learning
- We are not given examples of classes y
- Instead we have to discover classes in data

Clustering

 Goal: automatically partition examples into groups of similar examples

- Why? It is useful for
 - Automatically organizing data
 - Understanding hidden structure in data
 - Preprocessing for further analysis

What can we cluster in practice?

- news articles or web pages by topic
- protein sequences by function, or genes according to expression profile
- users of social networks by interest
- customers according to purchase history

Clustering

- Input
 - a set S= $\{x_1, x_2, ..., x_n\}$ of n points in feature space
 - a distance measure specifying distance $d(x_i, x_j)$ between pairs (x_i, x_j)
- Output
 - A partition $\{S_1, S_2, ..., S_k\}$ of S
 - Also represented as $\{z_1,...,z_n\}$ where z_i is the index of the partition to which x_i belongs.

Steps of Algorithm

- Gather data

Steps of Algorithm

- Gather data
- Initialize means

Steps of Algorithm

- Gather data
- Initialize means
- Repeat:
- Assign classes

Steps of Algorithm

- Gather data
- Initialize means
- Repeat:
- Assign classes
- Adjust means

Steps of Algorithm

- Gather data
- Initialize means
- Repeat:
- Assign classes
- Adjust means

Steps of Algorithm

- Gather data
- Initialize means
- Repeat:
- Assign classes
- Adjust means

The K-Means Optimization

• Assignment objective: For each i,

$$\arg\min_{z_i} \|x_i - \mu_{z_i}\|^2$$

• Mean update objective:

$$\min_{\mu_j} \sum_{\{i | z_i = j\}} \| x_i - \mu_{z_i} \|^2$$

• Overall objective:

$$\arg\min_{S} \sum_{i=1}^{k} \sum_{x \in S_{i}} \|x - \mu_{i}\|^{2} = \arg\min_{S} \sum_{i=1}^{k} |S_{i}| VarS_{i}$$

where μ_i is the mean of the points in S_i .

K-Means properties

- Time complexity: O(KNL) where
 - K is the number of clusters
 - N is number of examples
 - L is the number of iterations
- K is a hyperparameter
 - Needs to be set in advance (or learned on dev set)
- Different initializations yield different results!
 - Doesn't necessarily converge to best partition
- "Global" view of data: revisits all examples at every iteration

Questions for you...

- For what types of data can we not use kmeans?
- Are we sure it will find an optimal clustering?
- Does the initialization of the random means impact the result?
- Are there clusters that cannot be discovered using k-means?
- Do you know any other clustering algorithms?

What you should know

- New Algorithms
 - K-NN classification
 - K-means clustering
- Fundamental ML concepts
 - How to draw decision boundaries
 - What decision boundaries tells us about the underlying classifiers
 - The difference between supervised and unsupervised learning