CMSC 422 (Section 0101): Introduction to Machine Learning

University of Maryland, College Park, Spring 2019
Instructor: Soheil Feizi

Welcome to the CMSC 422 course webpage for Spring 2019.

CMSC 422 (Section 0101) is currently being taught by Soheil Feizi. See UMD Web Accessibility.

Announcements

  • Lecture 1 (1/29): Welcome to Machine Learning

  • Lecture 2 (2/5): Review of Probability and Linear Algebra

  • Lecture 3 (2/7): Decision Trees

    • Reading: Chapter 1 of the text book

    • Slides

  • Lecture 4 (2/12): Nearest Neighbor Classification

    • Reading: Chapter 3 of the text book

    • Slides

  • Lecture 5 (2/14): K-Means

  • Lecture 6 (2/19): Perceptron

    • Reading: Chapter 4 of the text book

    • Slides

  • Lecture 7 (2/21): Perceptron Convergence Analysis

    • Reading: Chapter 4 of the text book

    • Slides

  • Lecture 8 (2/26): Linear Classifiers, Gradient Descent and Hinge Loss

  • Lecture 9 (2/28): Gradient Descent, Analysis

  • Lecture 10 (3/5): Probabilistic View of ML + Naive Bayes

    • Reading: Chapter 9 of the text book

    • Slides

  • Lecture 11 (3/7): Midterm

  • Lecture 12 (3/12): Logistic Regression

  • Lecture 13 (3/14): Logistic Regression+ Cross Entropy Loss

  • Lecture 14 (3/26): Logistic Regression+ Multi-label Classification

  • Lecture 15 (3/28): Neural Networks

    • Slides

    • Reading: Chapter 10 of the text book

  • Lecture 16 (4/2): Nonlinear Regression + Back Propagation

    • Slides

    • Reading: Chapter 10 of the text book

  • Lecture 17 (4/4): Multi Label Classification + Momentum method

    • Slides

    • Reading: Chapter 10 of the text book

  • Lecture 18 (4/9): PCA

    • Slides

    • Reading: Chapter 15 of the text book

  • Lecture 19 (4/11): PCA II

    • Slides

    • Reading: Chapter 15 of the text book

  • Lecture 20 (4/16): PCA + AutoEncoders

  • Lecture 21 (4/18): AutoEncoders

    • Slides

    • Reading: Chapter 11 of the text book

  • Lecture 22 (4/23): Kernels

    • Slides

    • Reading: Chapter 11 of the text book

  • Lecture 23 (4/25): Kernels + Support Vector Machines

    • Slides

    • Reading: Chapter 7 of the text book

  • Lecture 24 (4/29): Support Vector Machines

    • Slides

    • Reading: Chapter 7 of the text book

    • Reading: notes

  • Lecture 25 (5/2): Support Vector Machines II

    • Slides

    • Reading: Chapter 7 of the text book

    • Reading: notes