
Message Passing and MPI
Abhinav Bhatele, Alan Sussman

Introduction to Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Announcements

• Assignment 1 is posted, due on Sep 18 11:59 pm

• Resource for OpenMP: https://computing.llnl.gov/tutorials/openMP

• Assignment 0.2 is also posted but not due until Sep 24 11:59 pm

• If you have questions about this assignment, hold off working on it until the topic is covered in class

• Resources for learning MPI:

• https://mpitutorial.com

• https://rookiehpc.org

2

https://computing.llnl.gov/tutorials/openMP
https://mpitutorial.com
https://rookiehpc.org

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Distributed memory programming models

• Each process only has access to its own local memory / address space

• When it needs data from remote processes, it has to send/receive messages

3

Process 0

Process 1

Time

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Message passing

• Each process runs in its own address space

• Access to only their memory (no shared data)

• Use special routines to exchange data among processes

4

Process 0

Process 1

Time

Process 2

Process 3

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Message passing programs

• A parallel message passing program consists of independent processes

• Processes created by a launch/run script

• Each process runs the same executable, but potentially different parts of the program,
and on different data

• Often used for SPMD style of programming

5

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Message passing history

• PVM (Parallel Virtual Machine) was developed in 1989-1993

• MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

• v2.0 — 1997

• v3.0 — 2012

• v4.0 — 2021

6

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Message Passing Interface (MPI)

• It is an interface standard — defines the operations / routines needed for message
passing

• Implemented by vendors and academics for different platforms

• Meant to be “portable”: ability to run the same code on different platforms without modifications

• Some popular open-source dimplementations are MPICH, MVAPICH, OpenMPI

• Vendors often implement their own versions optimized for their hardware: Cray/HPE, Intel

7

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Hello world in MPI

8

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
 int myrank, numpes;
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 MPI_Comm_size(MPI_COMM_WORLD, &numpes);
 printf("Hello world! I'm %d of %d\n", myrank, numpes);

 MPI_Finalize();
 return 0;
}

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Compiling and running an MPI program

• Compiling:

• Running:

9

mpicc -o hello hello.c

mpirun -n 2 ./hello

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Process creation / destruction

• int MPI_Init(int argc, char **argv)

• Initializes the MPI execution environment

• int MPI_Finalize(void)

• Terminates the MPI execution environment

10

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Process identification

• int MPI_Comm_size(MPI_Comm comm, int *size)

• Determines the size of the group associated with a communicator

• int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Determines the rank (ID) of the calling process in the communicator

• Communicator — a set of processes identified by a unique tag

• Default communicator: MPI_COMM_WORLD

11

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Announcements

• Assignment 0.2 is posted and due on Sep 24 11:59 pm

• Assignment 1 autograder changes:

• We tweaked the autograder a bit so that it does not report scores out of 90

• Reminder: your solutions will be run by us on zaratan to verify correctness

• Final exam date and time: Dec 11 6:30-8:30 pm

• In the respective classrooms: IRB 0318 and 1116

12

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Send a blocking pt2pt message

13

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Send a blocking pt2pt message

13

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Between a pair
of processes

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Receive a blocking pt2pt message

14

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

buf: address of receive buffer

count: maximum number of elements in receive buffer

datatype: datatype of each receive buffer element

source: rank of source process

tag: message tag

comm: communicator

status: status object

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

MPI_Status object

• Represents the status of the received message

• count: number of received entries

• MPI_SOURCE: source of the message

• MPI_TAG: tag value of the message

• MPI_ERROR: error associated with the message

15

typedef struct _MPI_Status {
 int count;
 int cancelled;
 int MPI_SOURCE;
 int MPI_TAG;
 int MPI_ERROR;
} MPI_Status, *PMPI_Status;

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Semantics of point-to-point communication

• A receive matches a send if certain arguments to the calls match

• What is matched: source, tag, communicator

• If the datatypes and count don’t match, this could lead to memory errors and correctness issues

• If a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

• “No-overtaking” messages

• Always true when processes are single-threaded

• Tags can be used to disambiguate between messages in case of non-determinism

16

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Semantics of point-to-point communication

• A receive matches a send if certain arguments to the calls match

• What is matched: source, tag, communicator

• If the datatypes and count don’t match, this could lead to memory errors and correctness issues

• If a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

• “No-overtaking” messages

• Always true when processes are single-threaded

• Tags can be used to disambiguate between messages in case of non-determinism

16

Between a pair
of processes

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Simple send/receive in MPI

17

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

 int data;
 if (myrank == 0) {
 data = 7;
 MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if (myrank == 1) {
 MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("Process 1 received data %d from process 0\n", data);
 }

 ...
}

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

18

Process 0

Process 1

Time

MPI_Send

MPI_Recv

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

18

Process 0

Process 1

Time

MPI_Send

MPI_Recv

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

18

Process 0

Process 1

Time

MPI_Send

MPI_Recv
Deadlock!

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

18

Process 0

Process 1

Time

MPI_Send

MPI_Recv
Deadlock!

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Example program

19

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 ...
 if (myrank % 2 == 0) {
 data = myrank;
 MPI_Send(&data, 1, MPI_INT, myrank+1, 0, ...);
 } else {
 data = myrank * 2;
 MPI_Recv(&data, 1, MPI_INT, myrank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, myrank, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Example program

19

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 ...
 if (myrank % 2 == 0) {
 data = myrank;
 MPI_Send(&data, 1, MPI_INT, myrank+1, 0, ...);
 } else {
 data = myrank * 2;
 MPI_Recv(&data, 1, MPI_INT, myrank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, myrank, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Example program

19

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 ...
 if (myrank % 2 == 0) {
 data = myrank;
 MPI_Send(&data, 1, MPI_INT, myrank+1, 0, ...);
 } else {
 data = myrank * 2;
 MPI_Recv(&data, 1, MPI_INT, myrank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, myrank, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Example program

19

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 ...
 if (myrank % 2 == 0) {
 data = myrank;
 MPI_Send(&data, 1, MPI_INT, myrank+1, 0, ...);
 } else {
 data = myrank * 2;
 MPI_Recv(&data, 1, MPI_INT, myrank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, myrank, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Example program

19

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 ...
 if (myrank % 2 == 0) {
 data = myrank;
 MPI_Send(&data, 1, MPI_INT, myrank+1, 0, ...);
 } else {
 data = myrank * 2;
 MPI_Recv(&data, 1, MPI_INT, myrank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, myrank, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

data = 0

data = 0

data = 2

data = 2

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

MPI communicators

• Communicator represents a group or set of processes numbered 0, … , n-1

• Identified by a unique “tag” assigned by the runtime

• Every program starts with MPI_COMM_WORLD (default communicator)

• Defined by the MPI runtime, this group includes all processes

• Several MPI routines to create sub-communicators

• MPI_Comm_split

• MPI_Cart_create

• MPI_Group_incl

20

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

MPI datatypes

• Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, …

• Derived or user-defined datatypes:

• Array of elements of another datatype

• struct datatype to accommodate sending multiple datatypes together

21

