
Designing Parallel Programs
Abhinav Bhatele, Alan Sussman

Introduction to Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Reminders / Annoucements

• If you do not have a zaratan account, email: cmsc416@cs.umd.edu

• When emailing, please mention your course and section number:

• Example: 416 / Section 0201

• Accomodations: please get the letters to the respective instructors soon

• Join piazza: https://piazza.com/umd/fall2024/cmsc416cmsc616

• Assignment 0 will be posted tonight Sep 3 11:59 pm, due on Sep 10 11:59 pm

• Office hours have been posted on the website

2

mailto:cmsc416@cs.umd.edu
https://piazza.com/umd/fall2024/cmsc416cmsc616

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Writing parallel programs

3

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

3

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

3

SPMD model

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

3

SPMD model

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

• Computation: how to divide work among threads/processes?

3

SPMD model

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Writing parallel programs

• Decide the serial algorithm first

• Data: how to distribute data among threads/processes?

• Data locality: assignment of data to specific processes to minimize data movement

• Computation: how to divide work among threads/processes?

• Figure out how often communication will be needed

3

SPMD model

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Conway’s Game of Life

• Two-dimensional grid of (square) cells

• Each cell can be in one of two states: live or dead

• Every cell only interacts with its eight nearest
neighbors

• In every generation (or iteration or time step),
there are some rules that decide if a cell will
continue to live or die or be born (dead ➜ live)

4

By Lev Kalmykov - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43448735https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Conway’s Game of Life

• Two-dimensional grid of (square) cells

• Each cell can be in one of two states: live or dead

• Every cell only interacts with its eight nearest
neighbors

• In every generation (or iteration or time step),
there are some rules that decide if a cell will
continue to live or die or be born (dead ➜ live)

4

By Lev Kalmykov - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43448735https://en.wikipedia.org/wiki/Conway's_Game_of_Life

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Two-dimensional stencil computation

• Commonly found kernel in computational codes

• Heat diffusion, Jacobi method, Gauss-Seidel method

5

A[i, j] =
A[i, j] + A[i − 1,j] + A[i + 1,j] + A[i, j − 1] + A[i, j + 1]

5

2D 5-point Stencil

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Two-dimensional stencil computation

• Commonly found kernel in computational codes

• Heat diffusion, Jacobi method, Gauss-Seidel method

5

A[i, j] =
A[i, j] + A[i − 1,j] + A[i + 1,j] + A[i, j − 1] + A[i, j + 1]

5

2D 5-point Stencil

3D 7-point Stencil

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Serial code

6

for(int t=0; t<num_steps; t++) {
 ...

 for(i ...)
 for(j ...)
 A_new[i, j] = (A[i, j] + A[i-1, j] + A[i+1, j] + A[i, j-1] + A[i, j+1]) * 0.2

 // copy contents of A_new into A
 ...
}

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Serial code

6

for(int t=0; t<num_steps; t++) {
 ...

 for(i ...)
 for(j ...)
 A_new[i, j] = (A[i, j] + A[i-1, j] + A[i+1, j] + A[i, j-1] + A[i, j+1]) * 0.2

 // copy contents of A_new into A
 ...
}

Why do we keep two
copies of A?

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Serial code

6

for(int t=0; t<num_steps; t++) {
 ...

 for(i ...)
 for(j ...)
 A_new[i, j] = (A[i, j] + A[i-1, j] + A[i+1, j] + A[i, j-1] + A[i, j+1]) * 0.2

 // copy contents of A_new into A
 ...
}

Why do we keep two
copies of A?

For correctness, we have to ensure that
elements in A are not written into before they

are read in the same timestep / iteration

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil computation in parallel

7

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• Each process has to communicate with two
neighbors (above and below)

7

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• Each process has to communicate with two
neighbors (above and below)

7

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• Each process has to communicate with two
neighbors (above and below)

7

Ghost cells

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• Each process has to communicate with two
neighbors (above and below)

• 2D decomposition

• Divide both rows and columns (2d blocks)
among processes

• Each process has to communicate with four
neighbors

7

Ghost cells

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

2D stencil computation in parallel

• 1D decomposition

• Divide rows (or columns) among processes

• Each process has to communicate with two
neighbors (above and below)

• 2D decomposition

• Divide both rows and columns (2d blocks)
among processes

• Each process has to communicate with four
neighbors

7

Ghost cells

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Prefix sum

• Calculate sums of prefixes (running totals) of elements (numbers) in an array

• Also called a “scan” sometimes

8

pSum[0] = A[0]

for(i=1; i<N; i++) {
 pSum[i] = pSum[i-1] + A[i]
}

1 2 3 4 5 6 …

1 3 6 10 15 21 …pSum

A

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Parallel prefix sum

9

2 8 3 5 7 4 1 6

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Parallel prefix sum

9

2 8 3 5 7 4 1 6

0 1 2 3 4 5 6 7Processes/
threads

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Parallel prefix sum

9

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

0 1 2 3 4 5 6 7

Stride 1

Processes/
threads

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Parallel prefix sum

9

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 23 19 17 18

0 1 2 3 4 5 6 7

Stride 1

Stride 2

Processes/
threads

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Parallel prefix sum

9

2 8 3 5 7 4 1 6

2 10 11 8 12 11 5 7

2 10 13 18 25 29 30 36

2 10 13 18 23 19 17 18

0 1 2 3 4 5 6 7

Stride 1

Stride 2

Stride 4

Processes/
threads

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

In practice

10

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

In practice

• You have N numbers and p processes, N >> p

10

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

In practice

• You have N numbers and p processes, N >> p

• Assign a N/p block to each process

• Do the serial prefix sum calculation for the blocks owned on each process locally

10

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

In practice

• You have N numbers and p processes, N >> p

• Assign a N/p block to each process

• Do the serial prefix sum calculation for the blocks owned on each process locally

• Then do parallel algorithm with partial prefix sums (using the last element from each
local block)

• Last element from sending process is added to all elements in receiving process’ sub-block

10

Abhinav Bhatele, Alan Sussman (CMSC416 / CMSC616)

Load balance and grain size

• Load balance: try to balance the amount of work (computation) assigned to different
threads/ processes

• Bring ratio of maximum to average load as close to 1.0 as possible

• Secondary consideration: also load balance amount of communication

• Grain size: ratio of computation-to-communication

• Coarse-grained (more computation) vs. fine-grained (more communication)

11

