
This class is being recorded

Please turn off your video and/or video if you do
not wish to be recorded

The Intent Class

Starting Activities with Intents
Explicit Activation

Implicit Activation via Intent resolution

A data structure that represents
An operation to be performed, or

An event that has occurred

Using Intents for operations to be performed
i.e., using an Intent to start a single Activity

We’ll cover using Intents for event notification
when we talk about BroadcastReceivers

Intents provide a flexible “language” for specifying
operations to be performed

e.g., I want to pick a contact, take a photo, dial a phone
number, etc.

An Intent is constructed by one component that
wants some work done

It is delivered to another component that offers to
perform that work

Action

Data

Category

Type

Component

Extras

Flags

String representing the desired operation

ACTION_DIAL – Dial a number

ACTION_EDIT – Display data to edit

ACTION_SYNC – Synchronize device data with a
server

ACTION_MAIN – Start as initial activity of app

val newIntent = Intent(Intent.ACTION_DIAL)

Or

val newIntent = Intent()
newIntent.action = Intent.ACTION_DIAL

Data associated with the Intent

Formatted as a Uniform Resource Identifier (URI)

Data to view on a map
Uri.parse(“geo:0,0?q=1600+Pennsylvania
 +Ave+Washington+DC”)

Number to dial in the phone dialer
Uri.parse(“tel:+15555555555”)

val intent= Intent (Intent.ACTION_DIAL,
 Uri.parse("tel:+15555555555"))

Or

val intent = Intent(Intent.ACTION_DIAL)
intent.data = Uri.parse("tel:+15555555555")

Additional information about the components that
are allowed to handle the Intent

CATEGORY_BROWSABLE – Activity can be
invoked to display data referenced by a URI

CATEGORY_LAUNCHER – can be the initial
Activity of a task and is listed in top-level app
launcher

Specifies an explicit MIME type of the Intent data

Examples
image/*, image/png, image/jpeg

text/html, text/plain

If unspecified, Android will infer the type

The component that should receive this Intent

Use this when there’s exactly one named
component that should receive the intent

val intent = Intent(packageContext: Context!,
 cls: Class<*>!

Or

Intent intent = new Intent ();

and one of:

setComponent(), setClass(), or setClassName()

Additional information associated with Intent

Treated as a map (key-value pairs)

val intent = Intent(Intent.ACTION_SEND)
intent.putExtra(Intent.EXTRA_EMAIL,
 arrayOf(“aporter@cs.umd.edu”,
 “ceo@microsoft.com”,
 “potus@whitehouse.gov”,
 “mozart@musician.org”))

Several forms depending on data type
putExtra(name: String!, value: String?);

putExtra(name: String!, value: FloatArray?);

…

Specify additional information on how Intent
should be handled

FLAG_ACTIVITY_NO_HISTORY
Don’t put this Activity in the Task backstack

FLAG_DEBUG_LOG_RESOLUTION
Print extra logging information when this Intent is
processed

val intent = Intent(Intent.ACTION_SEND)
intent.flags =
 Intent.FLAG_ACTIVITY_NO_HISTORY

fun startActivity(intent: Intent!): Unit

Can be named explicitly by setting the Intent’s
component

Otherwise, it is determined implicitly

Intent specifies the target Activity

Android starts the target Activity on startActivity() call

Consider an app that has two activities
LoginActivity checks username & password and then explicitly
activates HelloAndroidActivity
HelloAndroidActivity shows “Hello username” message

Note: More modern Android code will use two Fragments rather
than two Activities for this use case. See
HelloAndroidWithLoginFragment (will revisit in later classes)

HelloAndroid
WithLogin

When the Activity to be started is not explicitly
named, Android tries to find Activities that match
the information contained in the Intent

This process is called Intent Resolution

IntentFilters describe which operations a given
Activity can handle

IntentFilters can be specified in AndroidManifest.xml or
programmatically

Intents describe desired operations

Android matches Intents with IntentFilters to
determine which Activities can handle a given Intent

Action

Type and Data

Categories

If the action specified in the Intent matches one
action listed in the filter, the intent passes

If the filter has no actions, the intent fails

If the Intent has no action, but the filter contains at
least one action, the Intent passes

If every category in the Intent matches a category
in the filter, it passes

The reverse is not necessary

Each part of the URI is a separate
attribute: scheme, host, port, and path

Attributes have sequential dependencies

The URI in an intent is only compared to attributes
included in the filter

An intent without a URI and a MIME type only passes if the filter does
not specify any URIs or MIME types

An intent with a URI but no MIME type passes only if its URI matches
the filter's URI and the filter doesn’t specify a MIME type

An intent that contains a MIME type but not a URI passes the test only
if the filter lists the same MIME type and does not specify a URI format

An intent with both a URI and a MIME type passes the MIME type test
only if that type matches a type listed in the filter. It passes the URI
test either if its URI matches a filter URI or if it has
a content: or file: URI and the filter does not specify a URI

<activity …>
 …
 <intent-filter …>
 …
 <action android:name=”actionName" />
 …
 </intent-filter>
 …
</activity>

<activity …>
 …
 <intent-filter …>
 …

 <action android:name=”android.intent.action.DIAL" />
 …
 </intent-filter>
 …
</activity>

<intent-filter …>
 …
 <data
 android:mimeType="string”
 android:scheme="string"
 android:host="string"
 android:port="string"
 android:path="string"
 android:pathPattern="string"
 android:pathPrefix="string"
 />
 …
</intent-filter>

<intent-filter …>
 …

 <data android:scheme=”geo" />
 …

</intent-filter>

<intent-filter …>
 …

 <category android:name="string" />
 …

</intent-filter>

<intent-filter …>
 <action android:name ="android.intent.action.VIEW" />
 <category android:name ="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE”/>
 <data android:scheme ="geo”/>
</intent-filter>

Note: to receive implicit intents an Activity should
specify an IntentFilter that includes the following
category

"android.intent.category.DEFAULT”

android:priority – Priority given to the parent
component when handling matching Intents

Causes Android to prefer one activity over another

-1000 <= priority <=1000

Higher values represent higher priorities

The MapLocation app created an implicit Intent and then used it in a
call to startActivity()

The goal is to start a Maps app

What if the user has uninstalled all Maps apps?

Your code should always check before attempting to start an Activity
with an implicit Intent

You may need to specify information about 3rd party apps you want to
start implicitly

 See: https://developer.android.com/training/package-visibility

MapLocation

Implicit Intents can pose security hazards

Prefer explicit Intents when possible
Can use Fragments for intra-app use cases

Set the android:exported attribute to false in
AndroidManifest.xml, if you don’t want other apps
to start a given component in your app

% adb shell dumpsys package

Permissions

HelloAndroidWithLogin

MapLocation

