
This class is being recorded

Please turn off your video and/or video if you do
not wish to be recorded

Android permissions

Defining and using permissions

Component permissions and related APIs

Permissions protects resources and data

For instance, they limit access to:
User information – e.g., Contacts

Cost-sensitive API’s – e.g., SMS/MMS

System resources – e.g., Camera

Permissions are represented as strings

Apps describe relevant permissions in
AndroidManifest.xml, including

Permissions they use

Permissions required of components that want to
interact with them

Applications specify permissions they use through
a <uses-permission> tag

These permissions must be granted before
access is allowed

Apps must check at runtime that all required
permissions have been granted

<manifest … >
…
<uses-permission android:name="android.permission.CAMERA”/>
<uses-permission android:name="android.permission.INTERNET”/>
<uses-permission

android:name=“android.permission.ACCESS_FINE_LOCATION”/>
…
</manifest >

See: https://developer.android.com/training/permissions/index.html

Selects a contact from contacts database

Displays a map centered on selected contact’s
address

Requires permissions to read user’s contacts db

MapLocation
FromContacts

1. Check whether permissions have been granted
2. If not, check whether user has previously denied

permission
1. Can try to explain the need for this permission and

possibly ask user to grant permission

3. If user has not been asked for permission, do so
now

See: MapLocationFromContacts

Example use case

Define ActivityResultLauncher<String> instance
This instance calls registerForActivityResult(), passing in necessary
callback info
This info involves requestPermission() or
requestMultiplePermissions() contract interface object

Call ActivityResultLauncher<String>.launch(String) to
request desired permissions

Registered callback is started when permission request returns

Apps can also define and enforce their own
permissions

Suppose your application performs a potentially
dangerous operation

You might not want to allow just any application
to invoke yours

Android lets you define & enforce your own permissions

Simple Application that performs a (pretend)
dangerous action

PermissionExampleBoom

You don’t want just any application to run
PermissionExampleBoom

Define & enforce an application-specific
permission

<!-- Defines a custom permission -->
<permission
 android:name="course.examples.permissionexample.BOOM_PERM"
 android:description="@string/boom_perm_string"
 android:label="@string/boom_permission_label_string"
 android:protectionLevel="dangerous" />

<!--
Enforces the BOOM_PERM permission on users of this application
-->
<application
 android:allowBackup="false"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:permission="course.examples.permissionexample.BOOM_PERM"
 android:theme="@style/MaterialTheme">
 …

Normal – Low risk
System automatically grants permission

Dangerous– High risk
User must explicitly grant permission

Apps that want to use PermissionExampleBoom
must acquire the required permission

PermissionExampleBoomPermissionExample
BoomUser

Application declares that it needs permissions
required by other Applications it uses

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="course.examples.permissionexample.boomuser"
 android:versionCode="1"
 android:versionName="1.0" >

 <!-- App needs the "...BOOM_PERM permission -->
 <uses-permission
 android:name="course.examples.permissionexample.BOOM_PERM" />

Individual components can set their own
permissions, restricting which other components
can access them

Component permissions take precedence over
application-level permissions

Restricts which components can start the
associated Activity

Checked within execution of
startActivity()

startActivityForResult()

Throws SecurityException on permissions failure

Restricts which components can start or bind to the
associated service

Checked within execution of
Context.startService()
Context.stopService()
Context.bindService()

Throws SecurityException on permissions failure

Restricts which components can send & receive
broadcasts

Permissions checked in multiple places

More on this when we discuss
BroadcastReceivers

Restrict which components can read & write the
data in a ContentProvider

More on this when we discuss ContentProviders

DataManagement

MapLocationFromContacts

PermissionBoom

PermissionBoomUser

