
This class is being recorded
Please turn off your video and/or video if you do
not wish to be recorded

Lifecycle-Aware Components
ViewModel
Live Data

Multiple entry points launched individually
Components started in many different orders
Android kills components on reconfiguration / low
memory

Don’t store app data or state in your app
components (e.g., Activity, Fragments,
BroadcastReceivers, etc.)
Don’t design your app components so they
depend on each other

Links app components to lifecycle events
Lifecycle – Represents an Object with an Android
lifecycle
LifecycleOwner – An interface to a class with an
Android lifecycle
LifecycleObserver – Callbacks for listening to
lifecycle changes

Holds information about the lifecycle state of an
Android component
State – Enum representing lifecyle states
Events – Enum representing lifecycle events
(transitions between states)

INITIALIZED - Initialized state for LifecycleOwner
CREATED - Created state for LifecycleOwner
DESTROYED - Destroyed state for LifecycleOwner
RESUMED - Resumed state for LifecycleOwner
STARTED - Started state for LifecycleOwner

ON_ANY - Constant matching all events
ON_CREATE - onCreate event of the LifecycleOwner
ON_DESTROY - onDestroy event of the LifecycleOwner
ON_PAUSE - onPause event of the LifecycleOwner
ON_RESUME - onResume event of the LifecycleOwner
ON_START - onStart event of the LifecycleOwner
ON_STOP - onStop event of the LifecycleOwner

void addObserver(LifecycleObserver observer)
Adds a LifecycleObserver that will be notified when the
LifecycleOwner changes state

void removeObserver(LifecycleObserver observer)
Removes the given observer from the observers list

Lifecycle.State getCurrentState()
Returns the current state of the Lifecycle

An interface to a class that has an Android
lifecycle
Includes the getLifecycle() method which returns
a Lifecycle object

Callbacks for listening to lifecycle changes to a
LifecycleOwner
Observe events with DefaultLifecycleObserver

void onCreate(LifecycleOwner owner)
Notifies that ON_CREATE event occurred.

void onStart(LifecycleOwner owner)
Notifies that ON_START event occurred.

void onResume(LifecycleOwner owner)
Notifies that ON_RESUME event occurred.

void onDestroy(LifecycleOwner owner)
Notifies that ON_DESTROY event occurred

void onPause(LifecycleOwner owner)
Notifies that ON_PAUSE event occurred

void onStop(LifecycleOwner owner)
Notifies that ON_STOP event occurred

ON_CREATE, ON_START, ON_RESUME events are
dispatched after the LifecycleOwner's related
method returns
ON_PAUSE, ON_STOP, ON_DESTROY events are
dispatched before the LifecycleOwner's related
method is called

Lifecycle-Aware Components
ViewModel
Live Data

A business logic or screen level state holder
Often Responsible for preparing and managing
data for an Activity or a Fragment (owner)
Handles communication between the Activity or
Fragment and the rest of the application

Associated with a scope (e.g., a Fragment or an
Activity)
Retained for as long as the scope is alive

Will not be destroyed if its owner is destroyed for a
configuration change

After reconfiguration, new instance of the owner will be
reconnected to the existing ViewModel

Should never access the View hierarchy or hold a
reference to the Activity or the Fragment

void onCleared()
This method will be called when this ViewModel is no
longer used and will be destroyed

<init> (@NonNull owner: ViewModelStoreOwner)
Creates a ViewModelProvider

open T get(@NonNull modelClass: Class<T>)
Returns an existing ViewModel or creates a new one in
the scope (usually, a Fragment or an Activity),
associated with this ViewModelProvider

Lifecycle-Aware Components
ViewModel
Live Data

Data holder observable within a given lifecycle
Observer paired with a LifecycleOwner

Observer notified when data changes, only if the
LifecycleOwner is in STARTED or RESUMED state

Designed to hold individual data fields of ViewModel
Can also be used to share data between components

LifecycleAware
Ticker

MainViewModel
Maintains title list, current index, and current quote

Posts current index and current quote to observing
Fragments

Title and Quote Fragment display current data
MainActivity responsible for (un)displaying
QuoteFragment

FragmentDynamicLiveDataLayout

FragmentDynamicLiveDataLayout

Keep your UI controllers (activities and fragments) as lean as possible. They
should not try to acquire their own data; instead, use a ViewModel to do that,
and observe the LiveData to reflect the changes back to the views
Try to write data-driven UIs where your UI controller’s responsibility is to
update the views as data changes, or notify user actions back to
theViewModel
Put your data logic in your ViewModel class. ViewModel should serve as the
connector between your UI controller and the rest of your application
Never reference a View or Activity context in your ViewModel. If the
ViewModel outlives the activity (in case of configuration changes), your
activity will be leaked and not properly garbage-collected

Android App Architecture

LifecycleAwareTicker
FragmentDynamicLiveDataLayout

