
Load Balancing
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC616)



Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Assignment 4 and 5 (extra credit) have been posted

• Due dates: Nov 13 and 20 respectively

2



Abhinav Bhatele (CMSC416 / CMSC616)

Performance issues
• Sequential performance issues

• Load imbalance

• Communication performance issues / parallel overhead

• Algorithmic overhead / replicated work

• Speculative loss

• Critical paths

• Insufficient parallelism

• Bottlenecks

3



Abhinav Bhatele (CMSC416 / CMSC616)

Load imbalance

4



Abhinav Bhatele (CMSC416 / CMSC616)

Load imbalance

• Definition: unequal amounts of “work” assigned to different processes/threads

• Work could be computation or communication or both

4



Abhinav Bhatele (CMSC416 / CMSC616)

Load imbalance

• Definition: unequal amounts of “work” assigned to different processes/threads

• Work could be computation or communication or both

• Why is load imbalance bad?

• Overloaded processes can slow down all processes

4



Abhinav Bhatele (CMSC416 / CMSC616)

Load imbalance

• Definition: unequal amounts of “work” assigned to different processes/threads

• Work could be computation or communication or both

• Why is load imbalance bad?

• Overloaded processes can slow down all processes

4

Load imbalance =
max_load
mean_load



Abhinav Bhatele (CMSC416 / CMSC616)

Load balancing

• The process of balancing load across threads, processes etc.

• Goal: to bring the maximum load close to average as much as possible

• Steps for balancing load include:

• Determine if load balancing is needed

• Determine when and how often to load balance

• Determine what information to gather/use for load balancing

• Choose/design a load balancing algorithm

5



Abhinav Bhatele (CMSC416 / CMSC616)

Is load balancing needed?

• Need the distribution of load (“work”) across processes

• Collect empirical information using performance tools

• Developer knowledge

• Analytical models of load distribution

6



Abhinav Bhatele (CMSC416 / CMSC616)

When/how often to load balance?

• Initial work distribution or partitioning or static load balancing

• At program startup

• Or sometimes in a separate run to determine new load distribution

• Dynamic load balancing: does load distribution evolve over time?

• During program execution

• How often? It depends …

7



Abhinav Bhatele (CMSC416 / CMSC616)

Information gathering for load balancing

• Centralized load balancing

• Gather all load information at one process — global view of data

• Distributed load balancing

• Every process only knows the load of a constant number of “neighbors”

• Hybrid or hierarchical load balancing

8



Abhinav Bhatele (CMSC416 / CMSC616)

Hierarchical load balancing

9

0

0

0

1024 63488 64512

1023 1024 2047 63488 64511 64512 65535

Token

Object

Load Data

Load Data

Greedy load balancing

Refinement load balancing

Figure 2: Hierarchical token-based load balancing scheme

balancing algorithm is invoked to make global load balancing decisions across the sub-domains. When load

balancing decisions are made, lightweight tokens that carry only the objects’ workload data are created and

sent to the destination group leaders of the sub-domains. The tokens represent the movement of objects

from an overloaded domain to an underloaded domain. When the tokens that represent the incoming objects

arrive at the destination group leader, their load data are integrated into the existing load database on that

processor. After this phase, the load database of all the group leaders at the lower level domains is updated,

reflecting the load balancing decisions made – new load database entries are created for the incoming objects,

and load database entries corresponding to the outgoing objects are removed from the database. This new

database can then be used to make load balancing decisions at that level. At the intermediate levels of the

tree, load balancing decisions are made in the form of which object migrates to which sub-domain. This

process repeats until load balancing reaches the lowest level, where final load balancing decisions are made

on migrating objects and their final destination processors.

At this point, tokens representing a migration of an object may have traveled across several load balancing

domains, therefore its original processor needs to know which final destination processor the token has

traveled to. In order to match original processors with their tokens, a global collective operation is performed

on the tree. By sending tokens instead of actual object data in the intermediate load balancing phases of

the hierarchical tree, this load balancing scheme ensures that objects are only migrated once after all the

final migration decisions are made.



Abhinav Bhatele (CMSC416 / CMSC616)

What information is used for load balancing

• Computational load

• Possibly, communication load (number/sizes of messages)

• Communication graph

10



Abhinav Bhatele (CMSC416 / CMSC616)

Load balancing algorithms

• Input: Amount of work (ni) assigned to each process pi

• Output: New assignments of work units to different processes

• Goals:

• Bring maximum load close to average

• Minimize the amount of data migration

• Secondary goals:

• Balance (possibly reduce) communication load (volume)

• Keep the time for doing load balancing to a minimum

11



Abhinav Bhatele (CMSC416 / CMSC616)

Examples of static load balancing
• Decomposition of n-D Stencil

• Using orthogonal recursive bisection (ORB), space-filling curves, etc.

12

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve



Abhinav Bhatele (CMSC416 / CMSC616)

Examples of static load balancing
• Decomposition of n-D Stencil

• Using orthogonal recursive bisection (ORB), space-filling curves, etc.

12

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve



Abhinav Bhatele (CMSC416 / CMSC616)

Examples of static load balancing
• Decomposition of n-D Stencil

• Using orthogonal recursive bisection (ORB), space-filling curves, etc.

12

http://datagenetics.com/blog/march22013/

https://en.wikipedia.org/wiki/Z-order_curve http://charm.cs.uiuc.edu/workshops/charmWorkshop2011/slides/CharmWorkshop2011_apps_ChaNGa.pdf

Space-
filling 

curves

ORB



Abhinav Bhatele (CMSC416 / CMSC616)

Simple greedy strategy

• Sort all the processes by their load

• Take some load (work) from the heaviest loaded process and assign that work to the 
most lightly loaded process

13



Abhinav Bhatele (CMSC416 / CMSC616)

Work stealing

• Decentralized strategy where processes steal work from nearby processes when 
they have nothing to do

• Each process has a queue of work items

• Looks at the other processes’ queues when there are no items remaining

• Implemented in Cilk, among other languages

14



Abhinav Bhatele (CMSC416 / CMSC616)

Other considerations

• Communication-aware load balancing

• Try to move (units of) work to processes that this work communicates with frequently

• Network topology-aware load balancing

• Take into account how the nodes are connected to one another to minimize some metrics (number of hops, 
average link load etc.)

15



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu


