
Message Passing and MPI
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC616)

Abhinav Bhatele (CMSC416 / CMSC616)

Announcements

• Assignment 0 is now posted online.

• Due on: Sept 18, 2023 11:59 pm

• Assignment 1 will be posted on Sept 18

• Resources for learning MPI:

• https://mpitutorial.com

• https://rookiehpc.org

2

https://mpitutorial.com
https://rookiehpc.org

Abhinav Bhatele (CMSC416 / CMSC616)

Shared memory architecture

• All processors/cores can access all memory as a single address space

3

https://computing.llnl.gov/tutorials/parallel_comp/#SharedMemory

Uniform Memory Access Non-uniform Memory Access (NUMA)

Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

• Each processor/core only has access to its local memory

• Writes in one processor’s memory have no effect on another processor’s memory

4

Non-uniform Memory Access (NUMA) Distributed memory

Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory architecture

• Each processor/core only has access to its local memory

• Writes in one processor’s memory have no effect on another processor’s memory

4

Non-uniform Memory Access (NUMA) Distributed memory

Abhinav Bhatele (CMSC416 / CMSC616)

Programming models

• Shared memory model: All threads have access to all of the memory

• pthreads, OpenMP

• Distributed memory model: Each process has access to its own local memory

• Also sometimes referred to as message passing

• MPI, Charm++

• Hybrid models: Use both shared and distributed memory models together

• MPI+OpenMP, Charm++ (SMP mode)

5

Abhinav Bhatele (CMSC416 / CMSC616)

Distributed memory programming models

• Each process only has access to its own local memory / address space

• When it needs data from remote processes, it has to send/receive messages

6

Process 0

Process 1

Time

Process 2

Process 3

Abhinav Bhatele (CMSC416 / CMSC616)

Message passing

• Each process runs in its own address space

• Access to only their memory (no shared data)

• Use special routines to exchange data

7

Process 0

Process 1

Time

Abhinav Bhatele (CMSC416 / CMSC616)

Message passing programs

• A parallel message passing program consists of independent processes

• Processes created by a launch/run script

• Each process runs the same executable, but potentially different parts of the program,
and on different data

• Often used for SPMD style of programming

8

Abhinav Bhatele (CMSC416 / CMSC616)

Message passing history

• PVM (Parallel Virtual Machine) was developed in 1989-1993

• MPI forum was formed in 1992 to standardize message passing models and MPI 1.0
was released in 1994

• v2.0 — 1997

• v3.0 — 2012

• v4.0 — 2021

9

Abhinav Bhatele (CMSC416 / CMSC616)

Message Passing Interface (MPI)

• It is an interface standard — defines the operations / routines needed for message
passing

• Implemented by vendors and academics for different platforms

• Meant to be “portable”: ability to run the same code on different platforms without modifications

• Some popular open-source dimplementations are MPICH, MVAPICH, OpenMPI

• Vendors often implement their own versions optimized for their hardware: Cray/HPE, Intel

10

Abhinav Bhatele (CMSC416 / CMSC616)

Hello world in MPI

11

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
 int rank, size;
 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("Hello world! I'm %d of %d\n", rank, size);

 MPI_Finalize();
 return 0;
}

Abhinav Bhatele (CMSC416 / CMSC616)

Compiling and running an MPI program

• Compiling:

• Running:

12

mpicc -o hello hello.c

mpirun -n 2 ./hello

Abhinav Bhatele (CMSC416 / CMSC616)

Process creation / destruction

• int MPI_Init(int argc, char **argv)

• Initializes the MPI execution environment

• int MPI_Finalize(void)

• Terminates MPI execution environment

13

Abhinav Bhatele (CMSC416 / CMSC616)

Process identification

• int MPI_Comm_size(MPI_Comm comm, int *size)

• Determines the size of the group associated with a communicator

• int MPI_Comm_rank(MPI_Comm comm, int *rank)

• Determines the rank (ID) of the calling process in the communicator

• Communicator — a set of processes identified by a unique tag

• Default communicator: MPI_COMM_WORLD

14

Abhinav Bhatele (CMSC416 / CMSC616)

Send a message

15

int MPI_Send(const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

buf: address of send buffer

count: number of elements in send buffer

datatype: datatype of each send buffer element

dest: rank of destination process

tag: message tag

comm: communicator

Abhinav Bhatele (CMSC416 / CMSC616)

Receive a message

16

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

buf: address of receive buffer

status: status object

count: maximum number of elements in receive buffer

datatype: datatype of each receive buffer element

source: rank of source process

tag: message tag

comm: communicator

Abhinav Bhatele (CMSC416 / CMSC616)

MPI_Status object

• Represents the status of the received message

• count: number of received entries

• MPI_SOURCE: source of the message

• MPI_TAG: tag value of the message

• MPI_ERROR: error associated with the message

17

typedef struct _MPI_Status {
 int count;
 int cancelled;
 int MPI_SOURCE;
 int MPI_TAG;
 int MPI_ERROR;
} MPI_Status, *PMPI_Status;

Abhinav Bhatele (CMSC416 / CMSC616)

Semantics of point-to-point communication

• A receive matches a send if the arguments to the calls match

• Same communicator and tag

• If the datatypes and count don’t match, the results could be disastrous

• If a sender sends two messages to a destination, and both match the same receive,
the second message cannot be received if the first is still pending

• “No-overtaking” messages

• Always true when processes are single-threaded

• Tags can be used to disambiguate between messages in case of non-determinism

18

Abhinav Bhatele (CMSC416 / CMSC616)

Simple send/receive in MPI

19

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 int data;
 if (rank == 0) {
 data = 7;
 MPI_Send(&data, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 } else if (rank == 1) {
 MPI_Recv(&data, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 printf("Process 1 received data %d from process 0\n", data);
 }

 ...
}

Abhinav Bhatele (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

20

Process 0

Process 1

Time

MPI_Send

MPI_Recv

Abhinav Bhatele (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

20

Process 0

Process 1

Time

MPI_Send

MPI_Recv
Deadlock!

Abhinav Bhatele (CMSC416 / CMSC616)

Basic MPI_Send and MPI_Recv

• MPI_Send and MPI_Recv routines are blocking

• Only return when the buffer specified in the call can be used again

• Send: Returns once sender can reuse the buffer

• Recv: Returns once data from Recv is available in the buffer

20

Process 0

Process 1

Time

MPI_Send

MPI_Recv
Deadlock!

Abhinav Bhatele (CMSC416 / CMSC616)

Example program

21

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ...
 if (rank % 2 == 0) {
 data = rank;
 MPI_Send(&data, 1, MPI_INT, rank+1, 0, ...);
 } else {
 data = rank * 2;
 MPI_Recv(&data, 1, MPI_INT, rank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

Abhinav Bhatele (CMSC416 / CMSC616)

Example program

21

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ...
 if (rank % 2 == 0) {
 data = rank;
 MPI_Send(&data, 1, MPI_INT, rank+1, 0, ...);
 } else {
 data = rank * 2;
 MPI_Recv(&data, 1, MPI_INT, rank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

Abhinav Bhatele (CMSC416 / CMSC616)

Example program

21

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ...
 if (rank % 2 == 0) {
 data = rank;
 MPI_Send(&data, 1, MPI_INT, rank+1, 0, ...);
 } else {
 data = rank * 2;
 MPI_Recv(&data, 1, MPI_INT, rank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

Abhinav Bhatele (CMSC416 / CMSC616)

Example program

21

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ...
 if (rank % 2 == 0) {
 data = rank;
 MPI_Send(&data, 1, MPI_INT, rank+1, 0, ...);
 } else {
 data = rank * 2;
 MPI_Recv(&data, 1, MPI_INT, rank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

Abhinav Bhatele (CMSC416 / CMSC616)

Example program

21

int main(int argc, char *argv[]) {
 ...
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 ...
 if (rank % 2 == 0) {
 data = rank;
 MPI_Send(&data, 1, MPI_INT, rank+1, 0, ...);
 } else {
 data = rank * 2;
 MPI_Recv(&data, 1, MPI_INT, rank-1, 0, ...);

 ...
 printf("Process %d received data %d\n”, data);
 }
 ...
}

rank = 00

1

Time

2

3

rank = 1

rank = 2

rank = 3

data = 0

data = 2

data = 2

data = 6

data = 0

data = 0

data = 2

data = 2

Abhinav Bhatele (CMSC416 / CMSC616)

MPI communicators

• Communicator represents a group or set of processes numbered 0, … , n-1

• Identified by a unique tag assigned by the runtime

• Every program starts with MPI_COMM_WORLD (default communicator)

• Defined by the MPI runtime, this group includes all processes

• Several MPI routines to create sub-communicators

• MPI_Comm_split

• MPI_Cart_create

• MPI_Group_incl

22

Abhinav Bhatele (CMSC416 / CMSC616)

MPI datatypes

• Can be a pre-defined one: MPI_INT, MPI_CHAR, MPI_DOUBLE, …

• Derived or user-defined datatypes:

• Array of elements of another datatype

• struct datatype to accomodate sending multiple datatypes

23

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

