
CSMC 412

Operating Systems

Prof. Ashok K Agrawala

© 2023 Ashok Agrawala

September 23 1CMSC412 Set 3

Intel x86 Architecture by Changwoo Min is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License.

September 23 CMSC412 Set 3 2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

View of the Memory

• An array of cells

• Each cell can store several bits (cell
width)
• 8- Byte
• 16 – Half Word
• 32 – Word
• ..

• Cells are organized as a linear array
with each cell having a unique address

• A memory cell is accessed by the CPU
by presenting the address of the cell
to the memory controller

March 2020 3

Address

Data

Memory Array

Address Space

• The address of a cell consists of say
n bits. This gives 2n unique
addresses, from 0 to (2n -1)

• We can view this address space in
any logical organization we desire,
treating any number of contiguous
cells as a block.

• When the number of such cells in a
block is a power of 2 then the
address can be decomposed easily
into the group number and the cell
within the group

March 2020 4

0

2𝑛 − 1

2𝑘 − 1

0n-1 k

n bit address

Address Space

Mapping of Address Spaces

• We can map any address space, “A” into any other
address space “B” as long as we can get a unique
address for one given address for the other.
• Map one address to the other
• Address spaces do not have to be of the same size. (Size

defined by the number of bits required to specify a
unique address.

• Usually, the cell sizes are same but if they are not, a
mapping there is required also.
• One organized with cell size of one byte while the other with

cell size of a word – 4 bytes

• How to map???

March 2020 5

Mapping of address spaces

• How to map (Going from “A” to “B”)
• Lookup table

• Organized by cells
• Each address in A has an entry for the address in B

• Use A as an index in the array which has the corresponding
address B

March 2020 6

A B

B

ABlock Number

0n-1 k

n bit address

Block Number

0m-1 k

Displaceme
nt

Displaceme
ntB

m bit address

X 86 vs x64

Operating mode Operating sub-mode
Operating

system required
Type of code being

run
Default address size Default operand size

Supported typical
operand sizes

Register file size

Long mode

64-bit mode

64-bit

64-bit code 64 bits 32 bits 8, 16, 32, or 64 bits 16 registers per file

Compatibility mode

32-bit code 32 bits 32 bits 8, 16, or 32 bits 8 registers per file

16-bit code 16 bits 16 bits 8, 16, or 32 bits 8 registers per file

Legacy mode

Protected mode

32-bit 32-bit code 32 bits 32 bits 8, 16, or 32 bits 8 registers per file

16-bit protected
mode

16-bit code 16 bits 16 bits 8, 16, or 32 bits[m 1] 8 registers per file

Virtual 8086 mode
16-bit protected
mode or 32-bit

some of real mode
code

16 bits 16 bits 8, 16, or 32 bits[m 1] 8 registers per file

Real mode 16-bit real mode real mode code 16 bits 16 bits 8, 16, or 32 bits[m 1] 8 registers per file

September 23 CMSC412 Set 3 7

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Register_file
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Protected_mode#The_386
https://en.wikipedia.org/wiki/Protected_mode#The_286
https://en.wikipedia.org/wiki/Protected_mode
https://en.wikipedia.org/wiki/Protected_mode#The_386
https://en.wikipedia.org/wiki/Protected_mode#The_286
https://en.wikipedia.org/wiki/X86-64#cite_note-opsize-prefix-29
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/X86-64#cite_note-opsize-prefix-29
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/X86-64#cite_note-opsize-prefix-29

September 23 CMSC412 Set 3 8

Basic Execution Environment.

Memory Management Registers
GDTR
LDTR
IDTR

TR

Control Registers
CR0
CR1
CR2
CR3
CR4

Debug Registers
Extended Control RegisterSeptember 23 CMSC412 Set 3 9

Operation Mode

 Protected mode
 This mode is the native state of the processor.

 Support virtual-8086 mode to execute “real-address mode”
8086 software in a protected, multi-tasking environment.

 Segmentation, 32bit addressing

 Real mode
 This mode implements the programming environment of the

Intel 8086 processor with extensions (such as the ability to
switch to protected or system management mode).

 The processor is placed in real-address mode following power-
up or a reset.

 16bit mode, Segmentation, 20bit addressing

September 23 CMSC412 Set 3 10

Memory Addresses

 Logical Address
 Included in the machine language instruction
 the address of an operand or of an instruction
 Consists of segment(16bit) and offset(32bit)

 offset - distance from the start of the segment to the actual address

 Linear Address (known as virtual address)
 A single 32-bit unsigned integer
 Range: 0x00000000~0xffffffff(4GB)

 Physical Address
 Used to address memory cells included in memory chips
 Represented as 32-bit unsigned integer

SEGMENTATION

UNIT
Logical Address Linear Address

PAGING

UNIT
Physical Address

MMU(Memory Management Unit)
September 23 CMSC412 Set 3 11

Memory Models
•No segmentation
•Code, Data, stacks are all contained in this
address space.
• 32 bit addressing

•Code, Data, stacks are typically contained in
separate segments for better isolation.
•32 bit addressing (32 bit offset, 16 bit seg.
selector)

•Compatibility mode for 8086 processor.
•20 bit addressing (16 bit offset, 16 seg.
selector)

September 23 CMSC412 Set 3 12

Privilege Level

 Code modules in lower privilege segments can only access
modules operating at higher privilege segments by means
of a tightly controlled and protected interface called gate.

 Attempts to access higher privilege segments without going
though a protection gate and without having sufficient
access rights causes a general-protection exception(#GP) to
be generated.

September 23 CMSC412 Set 3 14

September 23 CMSC412 Set 3 15

September 23 CMSC412 Set 3 16

General Purpose Registers (A, B, C and D)

64 56 48 40 32 24 16 8

R?X

E?X

?X

?H ?L

16 8

?S

Segment Registers
C,D,S,E,F and G

64 56 48 40 32 24 16 8

R?P

E?P

?P

?PL

Pointer Registers (S and B)

September 23 CMSC412 Set 3 17

Instruction Pointer Register (I)

64 56 48 40 32 24 16 8

RIP

EIP

IP

Index Registers (S and D)

64 56 48 40 32 24 16 8

R?I

E?I

?I

?IL

System Level Registers and Data
Structures

September 23 CMSC412 Set 3 18

Basic Program Execution Registers
 General-Purpose Registers

 For storing operands and pointers

 ESP – Stack pointer in the SS segment

 EBP – Frame pointer on the stack

 ECX – Counter for string and loop operations

 ESI – Source pointer for string operations

 EDI – Destination pointer for string operations.

September 23 CMSC412 Set 3 19

Basic Program Execution Registers
(cont’d)

 Segment Registers

 It holds 16-bit segment selectors. A segment selector is a special
pointer that identifies a segment in memory.

 To access a particular segment in memory, the segment selector for
that segment must be present in the appropriate segment register.

September 23 CMSC412 Set 3 20

Basic Program Execution Registers
(cont’d)

 Segment Selectors(16bit)

 Index(13bit) – Segment Descriptor entry in GDT, LDT

 TI (Table Indicator)(1bit)
 0 : Segment Descriptor is stored in GDT

 1 : Segment Descriptor is stored in LDT

 RPL(2bit) – Requested Privilege Level (CPL in CS)

INDEX TI RPL

Segment Selector
012315

Table Indicator

0 = GDT

1 = LDT

Requested Privilege Level (RPL)

Current Privilege Level (CPL) in CS
0 = the highest privilege level, kernel mode
1 = the lowest one, user mode

September 23 CMSC412 Set 3 21

Basic Program Execution Registers
(cont’d)

 Default Segment Selection Rules

 CS : Instructions

 All instruction fetches

 SS : Stack

 All stack pushes and pops. Any memory reference which uses the ESP or EBP
register as a base register.

 DS : Local Data

 All data references, except when relative to stack or string destination.

 ES : Destination Strings

 Destination of string instructions, eg. MOVS.

September 23 CMSC412 Set 3 22

Basic Program Execution Registers
(cont’d)

 EFLAGS Register
 The EFLAGS register report on the

status of the program being executed
and allows limited (application program
level) control of the processor.

 Some of the flags in the EFLAGS
register can be modified directly, using
special purpose instructions. There are
no instructions that allow the whole
register to be examined or modified
directly.

 When suspending a task, the processor
automatically saves the state of the
EFLAGS register in the task stack
segment(TSS) for the task being
suspended. When binding itself to a
new task, the task processor loads the
EFLAGS register with data from the new
task’s TSS.

September 23 CMSC412 Set 3 23

Basic Program Execution Registers
(cont’d)

 EIP (Instruction Pointer)

 The instruction pointer (EIP) register contains the offset in the current
code segment for the next instruction to be executed.

 It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of
instructions when executing JMP, Jcc, CALL, RET, and IRET instructions.

September 23 CMSC412 Set 3 24

Memory Management Registers

 The processor provides four memory-management
registers (GDTR, LDTR, IDTR an TR) that specify the
locations of the data structures which control
segmented memory management. Special instructions
are provided for loading and storing these registers.

September 23 CMSC412 Set 3 25

Control Registers

 Control registers determine operating mode of the
processor and the characteristics of the currently
running task.

•CR4: Contains a group of flags that
enable several architectural extensions,
and indicate operating system or
executive support for specific processor
capabilities.

• CR3: physical address of the page directory

•CR2: page fault linear address

•CR0: System control f lag
• PE f lag

- 0/1 : real mode/protected mode
• PG f lag

- 0: linear address == physical address
- 1 : paging enable

• TS f lag
- It causes the CPU to trap (int 7) if the floating
point unit is used. It is used to restore FPU state
lazily after a task switch.

September 23 CMSC412 Set 3 26

September 23 CMSC412 Set 3 27

General Purpose Instructions

 The general-purpose instructions perform basic data movement,
arithmetic, logic, program flow, and string operations that
programmers commonly use to write application and system
software to run.

 Data Transfer Instructions

 MOV, CMOV, PUSH, POP, XCHG, …

 Binary Arithmetic Instructions

 ADD, SUB, INC, DEC, …

 Decimal Arithmetic Instructions

 Logical Instructions

 AND, OR, XOR, …

 Shift and Rotate Instructions

 SAR, SAL, ROR, ROL, …

 Bit and Byte Instructions

 BT, SET, TEST, …

 Control Transfer Instructions

 JMP, CALL, INT, RET, IRET, INTO,
BOUND, …

 String Instructions

 MOVS, LODS, CMPS, …

 IO Instructions

 IN, OUT, …

 EFLSGS Control Instructions

 STC, CLC, …

 Segment Register Instructions

 LDS, LES, LFS, LGS, LSS

 Misc. Instructions

 NOP, …September 23 CMSC412 Set 3 28

System Instructions

 The following system instructions are used to control those
functions of the processor that are provided to support
operating systems and executives.

 Manipulate memory management
register

 LGDT, LLDT, LTR, LIDT, SGDT, SLDT,
SIDT, STR

 Load and store control registers

 MOV {CR0~CR4}, CLI, STI

 Invalidate Cache and TLB

 INVD, WBINVD, INVLPG

 Performance monitoring

 RDPMC, RDTSC, RDTSCP

 Fast System Call

 SYSENTER, SYSEXIT

 Pointer Validation

 LAR, LSL, VERR, VERW, ARPL

 Misc.

 LOCK, CLTS, HLT

Privileged instructions in red
which can be executed only
in ring 0.

September 23 CMSC412 Set 3 29

September 23 CMSC412 Set 3 30

Segmentation & Paging

 Segmentation
 provides a mechanism for dividing the processor’s linear

address space into smaller protected address spaces
called segments.

 translate logical address to linear address

 Paging
 provides a mechanism for implementing a conventional

demand-paged, virtual-memory system where sections of
a program’s execution environment are mapped into
physical memory as needed. It can also be used to
provide isolation between multiple tasks.

 translate linear address to physical address

September 23 CMSC412 Set 3 31

Segmentation & Paging (cont’d)

GDT/LDT

TI

CR3

September 23 CMSC412 Set 3 32

Segmentation

 Logical address to linear address translation

 Segment Selector

•To reduce address translation time
and coding complexity, the processor
provides registers for holding up to 6
segment selectors.
• CS, SS, DS, ES, FS, GS

Current Privilege Level (CPL) in CS
0 = the highest privilege level, kernel mode
1 = the lowest one, user mode

September 23 CMSC412 Set 3 33

Segmentation (cont’d)

 Global and local descriptor tables

September 23 CMSC412 Set 3 34

Segmentation (cont’d)

 Segment Descriptors
 It is a data structure in a GDT or LDT that provides the

processor with the size and location of a segment, as well as
access control and status information.

11: Code/Data
9: Write-enable

10: Expansion-direction
8: Accessed

September 23 CMSC412 Set 3 35

Paging

 Linear address to physical address translation

Linear Address

DIRECTORY TABLE OFFSET

+

Page Table

Page Directory
+

cr3

4KB Page frame

+

31 22 21 12 11 0

cr2

Page fault address

cr0

Cr0.PG = 1 : paging enabled

September 23 CMSC412 Set 3 36

Paging (cont’d)

 Page Directories and Page Tables entry field
 Available for system programmer’s use
 Global page
 Page size(0 indicates 4 Kbytes)
 Reserved(set to 0) / Dirty
 Accessed
 Cache disabled
 Write-through
 User/Supervisor
 Read/Write
 Present

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page-Table Base Address Avail. G
P
S

0 A
P
C
D

P
W
T

U
/
S

R
/

W
P

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page Base Address Avail. G 0 D A
P
C
D

P
W
T

U
/
S

R
/

W
P

September 23 CMSC412 Set 3 37

Protection

 Privilege Level Checking

 The segment-protection mechanism recognizes 4
privilege levels, numbers from 0 to 3. The greater
numbers mean lesser privileges.

 Privilege levels are checked when the segment
selector of a segment descriptor is loaded into a
segment register.

 When the processor detects a privilege level
violation, it generates a general-protection
exception(#GP).

September 23 CMSC412 Set 3 38

Protection (cont’d)

 To carry out privilege-level checks between code segments and data
segments, the processor recognizes the following three types of privilege
levels:
 Current Privilege Level (CPL)

 The privilege level of the currently executing task
 It is equal to the privilege level of the code segment from which instructions are

being fetched.

 Descriptor Privilege Level (DPL)
 The privilege level of the segment of gate.

 Requested Privilege Level (RPL)
 It is an override privilege level that is assigned to segment selectors.

* Privilege check for data access
September 23 CMSC412 Set 3 39

September 23 CMSC412 Set 3 40

Gate
 The architecture also defines a set of special descriptors called gates (call

gates, interrupt gates, trap gates, and task gates). These provide
protected gateways to system procedures and handlers that may operate
at a different privilege level than application programs and most
procedures.

 For example, a CALL to a call gate can provide access to a procedure in a
code segment that is at the same or a numerically lower privilege level
(more privileged) than the current code segment. To access a procedure
through a call gate, the calling procedure supplies the selector for the call
gate. The processor then performs an access rights check on the call gate,
comparing the CPL with the privilege level of the call gate and the
destination code segment pointed to by the call gate.

 If access to the destination code segment is allowed, the processor gets
the segment selector for the destination code segment and an offset into
that code segment from the call gate. If the call requires a change in
privilege level, the processor also switches to the stack for the targeted
privilege level. The segment selector for the new stack is obtained from
the TSS for the currently running task. Gates also facilitate transitions
between 16-bit and 32-bit code segments, and vice versa.

September 23 CMSC412 Set 3 41

Interrupt and Exception handling

 External interrupts, software interrupts and exceptions are handled
through the interrupt descriptor table (IDT). The IDT stores a collection of
gate descriptors that provide access to interrupt and exception handlers.
The linear address for the base of the IDT is contained in the IDT register
(IDTR).

 Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors.
To access an interrupt or exception handler, the processor first receives an
interrupt vector (interrupt number) from internal hardware, an external
interrupt controller, or from software by means of an INT, INTO, INT 3, or
BOUND instruction.

 The interrupt vector provides an index into the IDT. If the selected gate
descriptor is an interrupt gate or a trap gate, the associated handler
procedure is accessed in a manner similar to calling a procedure through
a call gate. If the descriptor is a task gate, the handler is accessed
through a task switch.

September 23 CMSC412 Set 3 42

Relationship of the IDTR and IDT

September 23 CMSC412 Set 3 43

Gate Descriptor

Call Gate

• IDT : Task Gate, Interrupt, Trap Gate
• LDT : Call Gate

• While transferring control to the proper
segment, the processor clears the EFLAGS.IF
flag, thus disabling further maskable interrupts.

•While transferring control to the proper
segment, the processor does not modify the
EFLAGS.IF flag.

September 23 CMSC412 Set 3 44

Executing a handler

* Exception or Interrupt Procedure call * Interrupt Task Switch

September 23 CMSC412 Set 3 45

Interrupt and Exception Vectors

 0 ~ 31 (fixed)
 Exceptions and nonmaskable interrupts

 6: Invalid Opcode

 13 : general protection exception

 14 : page fault

 32 ~ 47
 Maskable interrupts

 Interrupts caused by IRQs

 48 ~ 255
 S/W interrupts

 Linux uses only one of them,
 128 : to implement system calls

September 23 CMSC412 Set 3 46

Interrupt and Exceptions

 When an interrupt or exception is signaled, the processor halts
execution of the current program or task and switches to a
handler procedure that has been written specifically to handle the
interrupt or exception condition.

 The processor accesses the handler procedure through an entry in
the interrupt descriptor table (IDT).

 When the handler has completed handling the interrupt or
exception, program control is returned to the interrupted program
or task.

 If the code segment for the handler procedure has the same
privilege level as the currently executing program or task, the
handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for
the handler’s privilege level.

 A return from an interrupt or exception handler is initiated with
the IRET instruction. The IRET instruction is similar to the far RET
instruction, except that it also restores the contents of the EFLAGS
register for the interrupted procedure.

September 23 CMSC412 Set 3 47

Interrupt and Exceptions (cont’d)

 If no stack switch occurs, the processor does the following when calling
an interrupt or exception handler
 Pushes the current contents of the EFLAGS, CS, and EIP registers (in that

order) on the stack.
 Pushes an error code (if appropriate) on the stack.
 Loads the segment selector for the new code segment and the new

instruction pointer (from the interrupt gate or trap gate) into the CS and
EIP registers, respectively.

 If the call is through an interrupt gate, clears the IF flag in the EFLAGS
register.

 Begins execution of the handler procedure.

 When executing a return from an interrupt or exception handler from the
same privilege level as the interrupted procedure, the processor performs
these actions:
 Restores the CS and EIP registers to their values prior to the interrupt or

exception.
 Restores the EFLAGS register.
 Increments the stack pointer appropriately.
 Resumes execution of the interrupted procedure.

September 23 CMSC412 Set 3 48

Interrupt and Exceptions (cont’d)
 If a stack switch does occur, the processor does the following:

 Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP
registers.

 Loads the segment selector and stack pointer for the new stack (that is, the stack for
the privilege level being called) from the TSS into the SS and ESP registers and
switches to the new stack.

 Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted
procedure’s stack onto the new stack.

 Pushes an error code on the new stack (if appropriate).
 Loads the segment selector for the new code segment and the new instruction

pointer (from the interrupt gate or trap gate) into the CS and EIP registers,
respectively.

 If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.
 Begins execution of the handler procedure at the new privilege level.

 When executing a return from an interrupt or exception handler from a different
privilege level than the interrupted procedure, the processor performs these
actions:
 Performs a privilege check.
 Restores the CS and EIP registers to their values prior to the interrupt or exception.
 Restores the EFLAGS register.
 Restores the SS and ESP registers to their values prior to the interrupt or exception,

resulting in a stack switch back to the stack of the interrupted procedure.
 Resumes execution of the interrupted procedure.September 23 CMSC412 Set 3 49

Interrupt and Exceptions (cont’d)

September 23 CMSC412 Set 3 50

September 23 CMSC412 Set 3 51

Task Structure
 A task is made up of two parts: a task execution space and a task-

state segment(TSS).
 A task is identified by the segment selector for its TSS. When a

task is loaded into the processor for execution, the segment
selector, base address, limit, and segment descriptor attributes for
TSS are loaded into the task register.

September 23 CMSC412 Set 3 52

Task State Segment

•SS0, SS1, SS2
- Stack Segment for ring 0, 1, 2

•ESP0, ESP1, ESP2
- Stack pointer for ring 0, 1, 2

September 23 CMSC412 Set 3 53

H/W Task Switching

 The processor transfers execution to another task
in one of following cases

 JMP or Call instruction to a procedure located in a
different task using far pointer

 to a TSS descriptor in the GDT.

 to a task-gate descriptor in the GDT or the current LDT.

 An interrupt or exception vector points to a task-
gate descriptor in the IDT.

 The current task executes an IRET when the NT flag
in the EFLAGS register is set.

*
September 23 CMSC412 Set 3 54

H/W Task Switching (cont’d)

 The processor performs the following operations when
switching to a new task
 Obtains the TSS segment selector for the new task.
 Check that the current (old) task is allowed to switch to

the new task. (CPL/DPL/RPL)
 Saves the state of the current (old) task in the current

task’s TSS.
 Loads the task register with the segment selector and

descriptor for the new task’s TSS.
 The TSS state is loaded into the processor. This includes

the LDTT, CR3, EFLAGS, EIP, the general purpose registers,
and the segment selectors.

 The descriptor associated with the segment selectors are
loaded and qualified.

*
September 23 CMSC412 Set 3 55

September 23 CMSC412 Set 3 56

I/O Port Addressing

 The processor permits applications to access I/O ports
in either of two ways:

 Through a separate I/O address space

 Handled though a set of I/O instructions and a special I/O
protection mechanism

 Writes to I/O ports are guaranteed to be completed before the
next instruction in the instruction stream is executed.

 Through memory-mapped I/O

 Accessing I/O ports through memory-mapped I/O is handled
with the processors general-purpose move and string
instructions, with protection provided through segmentation or
paging.

September 23 CMSC412 Set 3 57

I/O Address Space

 The processor’s I/O address space is separate and distinct from the
physical-memory address space.

 The I/O address space consists of 216 (64K) individually addressable 8-bit
I/O ports, numbered 0 through FFFFH.

 I/O port addresses 0F8H through 0FFH are reserved.

September 23 CMSC412 Set 3 58

I/O port protection

 When accessing I/O ports through the I/O address space,
two protection devices control access:

 I/O instructions can be executed only if the current privilege
level (CPL) of the program or task currently executing is less
than or equal to the IOPL.

 Any attempt by a less privileged program or task to use an I/O
sensitive instruction results in a general-protection exception
(#GP) being signaled.

 The I/O permission bit map in the TSS can be used to modify
the effect of the IOPL on I/O sensitive instructions, allowing
access to some I/O ports by less privileged programs or tasks.

 When accessing memory-mapped I/O ports,
 the normal segmentation and paging protection also affect

access to I/O ports.

September 23 CMSC412 Set 3 59

I/O port protection (cont’d)

 The I/O permission bit map is a device for permitting limited access to
I/O ports by less privileged programs or tasks.
 If in protected mode and the CPL is less than or equal to the current IOPL,

the processor allows all I/O operations to proceed.
 If the CPL is greater than the IOPL, the processor checks the I/O

permission bit map to determine if access to a particular I/O port is
allowed.

 The I/O permission bit map is located in the TSS for the currently running
task or program.
 Each bit in the map corresponds to an I/O port byte address.

September 23 CMSC412 Set 3 60

September 23 CMSC412 Set 3 61

Stack

 The stack is a contiguous array of memory locations. It is
contained in a segment and identified by the segment selector in
the SS register.

 Items are placed on the stack using the PUSH instruction and
removed from the stack using the POP instruction.
 When an item is pushed onto the stack, the processor decrements

the ESP register, then writes the item at the new top of stack.
When an item is popped off the stack, the processor reads the
item from the top of stack, then increments the ESP register.

 The processor references the SS register automatically for all stack
operations. For example, when the ESP register is used as a
memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE
instructions all perform operations on the current stack.

September 23 CMSC412 Set 3 62

Stack (cont’d)

Return Instruction
Pointer

Stack Frame

Stack-Frame Base Pointer

September 23 CMSC412 Set 3 63

Procedure Call (CALL/RET)

 When executing a call, the processor does the following
 Pushes the current value of the EIP register on the stack.

 Loads the offset of the called procedure in the EIP register.

 Begins execution of the called procedure.

 When executing a near return, the processor performs these
actions:
 Pops the top-of-stack value (the return instruction pointer) into

the EIP register.

 If the RET instruction has an optional n argument, increments
the stack pointer by the number of bytes specified with the n
operand to release parameters from the stack.

 Resumes execution of the calling procedure.

September 23 CMSC412 Set 3 64

Procedure Call (CALL/RET) (cont’d)

CALL addr RET n

September 23 CMSC412 Set 3 65

	Slide 1: CSMC 412
	Slide 2
	Slide 3: View of the Memory
	Slide 4: Address Space
	Slide 5: Mapping of Address Spaces
	Slide 6: Mapping of address spaces
	Slide 7: X 86 vs x64
	Slide 8
	Slide 9: Basic Execution Environment.
	Slide 10: Operation Mode
	Slide 11: Memory Addresses
	Slide 12: Memory Models
	Slide 14: Privilege Level
	Slide 15
	Slide 16
	Slide 17
	Slide 18: System Level Registers and Data Structures
	Slide 19: Basic Program Execution Registers
	Slide 20: Basic Program Execution Registers (cont’d)
	Slide 21: Basic Program Execution Registers (cont’d)
	Slide 22: Basic Program Execution Registers (cont’d)
	Slide 23: Basic Program Execution Registers (cont’d)
	Slide 24: Basic Program Execution Registers (cont’d)
	Slide 25: Memory Management Registers
	Slide 26: Control Registers
	Slide 27
	Slide 28: General Purpose Instructions
	Slide 29: System Instructions
	Slide 30
	Slide 31: Segmentation & Paging
	Slide 32: Segmentation & Paging (cont’d)
	Slide 33: Segmentation
	Slide 34: Segmentation (cont’d)
	Slide 35: Segmentation (cont’d)
	Slide 36: Paging
	Slide 37: Paging (cont’d)
	Slide 38: Protection
	Slide 39: Protection (cont’d)
	Slide 40
	Slide 41: Gate
	Slide 42: Interrupt and Exception handling
	Slide 43: Relationship of the IDTR and IDT
	Slide 44: Gate Descriptor
	Slide 45: Executing a handler
	Slide 46: Interrupt and Exception Vectors
	Slide 47: Interrupt and Exceptions
	Slide 48: Interrupt and Exceptions (cont’d)
	Slide 49: Interrupt and Exceptions (cont’d)
	Slide 50: Interrupt and Exceptions (cont’d)
	Slide 51
	Slide 52: Task Structure
	Slide 53: Task State Segment
	Slide 54: H/W Task Switching
	Slide 55: H/W Task Switching (cont’d)
	Slide 56
	Slide 57: I/O Port Addressing
	Slide 58: I/O Address Space
	Slide 59: I/O port protection
	Slide 60: I/O port protection (cont’d)
	Slide 61
	Slide 62: Stack
	Slide 63
	Slide 64: Procedure Call (CALL/RET)
	Slide 65: Procedure Call (CALL/RET) (cont’d)

