
Mutual Exclusion in
Distributed systems

Assumptions

• N Independent Nodes/Sites

• Communication is only through message passing

• Messages ae delivered in finite time

• Communication delays are unknown and variable

Requirements

• No Deadlock:
Two or more site should not endlessly wait for any message that will never arrive.

• No Starvation:
Every site who wants to execute critical section should get an opportunity to
execute it in finite time. Any site should not wait indefinitely to execute critical
section while other site are repeatedly executing critical section

• Fairness:
Each site should get a fair chance to execute critical section. Any request to
execute critical section must be executed in the order they are made i.e., Critical
section execution requests should be executed in the order of their arrival in the
system.

• Fault Tolerance:
In case of failure, it should be able to recognize it by itself in order to continue
functioning without any disruption.

Logical Clock

• Used for Ordering of events

• Logical Clocks refer to implementing a protocol on all machines
within your distributed system, so that the machines are able to
maintain consistent ordering of events within some virtual timespan.

• A logical clock is a mechanism for capturing chronological and causal
relationships in a distributed system.

• Distributed systems may have no physically synchronous global clock,
so a logical clock allows global ordering on events from different
processes in such systems.

Timestamp
• Only local clock which is not synchronized
• Causality – Ordering of Events

• Happen Before relationship
• Taking single PC only if 2 events A and B are occurring one by one then TS(A) < TS(B). If A has

timestamp of 1, then B should have timestamp more than 1, then only happen before
relationship occurs.

• Taking 2 PCs and event A in P1 (PC.1) and event B in P2 (PC.2) then also the condition will be
TS(A) < TS(B). Taking example- suppose you are sending message to someone at 2:00:00 pm,
and the other person is receiving it at 2:00:02 pm. Then it’s obvious that TS(sender) <
TS(receiver).

• Properties Derived from Happen Before Relationship –
• Transitive Relation –

If, TS(A) <TS(B) and TS(B) <TS(C), then TS(A) < TS(C)
• Causally Ordered Relation –

a->b, this means that a is occurring before b and if there is any changes in a it will surely
reflect on b.

• Concurrent Event –
This means that not every process occurs one by one, some processes are made to happen
simultaneously i.e., A || B.

Timestamp Algorithm

1. A process increments its counter before each local event
(e.g., message sending event);

2. When a process sends a message, it includes its counter
value with the message after executing step 1;

3. On receiving a message, the counter of the recipient is
updated, if necessary, to the greater of its current counter and
the timestamp in the received message. The counter is then
incremented by 1 before the message is considered received.

Ricart/Agrawala Algorithm

• Two type of messages (REQUEST and REPLY) are used and communication
channels are assumed to follow FIFO order.

• A site sends a REQUEST message to all other site to get their permission to
enter critical section.

• A site send a REPLY message to other site to give its permission to enter
the critical section.

• A timestamp is given to each critical section request using Logical
Timestamp.

• Timestamp is used to determine priority of critical section requests.
Smaller timestamp gets high priority over larger timestamp. The execution
of critical section request is always in the order of their timestamp.

Algorithm

• To enter Critical section:
• When a site Si wants to enter the critical section, it send a

timestamped REQUEST message to all other sites.

• When a site Sj receives a REQUEST message from site Si, It sends
a REPLY message to site Si if and only if
• Site Sj is neither requesting nor currently executing the critical section.

• In case Site Sj is requesting and the timestamp of Site Si‘s request is smaller than its own
request.

• Otherwise, the request is deferred by site Sj.

Algorithm

• To execute the critical section:
• Site Si enters the critical section if it has received the REPLY message from all

other sites.

• To release the critical section:
• Upon exiting site Si sends REPLY message to all the deferred requests.

• Complexity – 2(n-1) messages

Maekawa’s Algorithm

• Three type of messages (REQUEST, REPLY and RELEASE) are used.

• A site send a REQUEST message to all other site in its request set or
quorum to get their permission to enter critical section.

• A site send a REPLY message to requesting site to give its permission
to enter the critical section.

• A site send a RELEASE message to all other site in its request set or
quorum upon exiting the critical section.

The construction of request set or Quorum:

1.∀i ∀j : i ≠ j, 1 ≤ i, j ≤ N :: Ri ⋂ Rj ≠ ∅
i.e there is at least one common site between the request sets of any two sites.
2.∀i : 1 ≤ i ≤ N :: Si ∊ Ri
3.∀i : 1 ≤ i ≤ N :: |Ri| = K
4.Any site Si is contained in exactly K sets.
5.N = K(K - 1) +1 and |Ri| = √N

Algorithm

• To enter Critical section:
• When a site Si wants to enter the critical section, it sends a request message REQUEST(i) to all other sites in

the request set Ri.
• When a site Sj receives the request message REQUEST(i) from site Si, it returns a REPLY message to site Si if it

has not sent a REPLY message to the site from the time it received the last RELEASE message. Otherwise, it
queues up the request.

• .

• To execute the critical section:
• A site Si can enter the critical section if it has received the REPLY message from all the site in request set Ri

• To release the critical section:
• When a site Si exits the critical section, it sends RELEASE(i) message to all other sites in request set Ri

• When a site Sj receives the RELEASE(i) message from site Si, it send REPLY message to the next site waiting in
the queue and deletes that entry from the queue

• In case queue is empty, site Sj update its status to show that it has not sent any REPLY message since the
receipt of the last RELEASE message

Maekawa’s Algorithm

• Message Complexity:
Maekawa’s Algorithm requires invocation of 3√N messages per critical
section execution as the size of a request set is √N. These 3√N messages
involves.
• √N request messages
• √N reply messages
• √N release messages

• Drawbacks of Maekawa’s Algorithm:
• This algorithm is deadlock prone because a site is exclusively locked by other sites

and requests are not prioritized by their timestamp.

• Performance:
• Synchronization delay is equal to twice the message propagation delay time
• It requires 3√n messages per critical section execution.

	Slide 1: Mutual Exclusion in Distributed systems
	Slide 2: Assumptions
	Slide 3: Requirements
	Slide 4: Logical Clock
	Slide 5: Timestamp
	Slide 6: Timestamp Algorithm
	Slide 7: Ricart/Agrawala Algorithm
	Slide 8: Algorithm
	Slide 9: Algorithm
	Slide 10: Maekawa’s Algorithm
	Slide 11: The construction of request set or Quorum:
	Slide 12: Algorithm
	Slide 13: Maekawa’s Algorithm

