
CMSC330 - Organization of Programming Languages
Summer 2023 - Final

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• You may use anything on the accompanying reference sheet anywhere on this exam

• Please write legibly. If we cannot read your answer you will not receive credit

• You may not leave the room or hand in your exam within the last 10 minutes of the exam

• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
Q1 10
Q2 10
Q3 15
Q4 12
Q5 6
Q6 4
Q7 10
Q8 13

Total 80

1

Problem 1: Language Concepts [Total 10 pts]

True False
x:’a &i32, y:’b &i32 have the same type T F

Operational Semantics is to evaluator as CFG is to parser T F

The reference counting garbage collection strategy uses less space than the stop and copy one (on average) T F

If you cannot eagerly evaluate, then you also cannot lazily evaluate a λ-calculus expression T F

Expressions and Statements can be used interchangeably T F

Problem 2: Interpreters [Total 10 pts]

Consider the following Grammar and assume semantics follows Python’s behavior

E ⇒ M + E | M | | E | M − E | M
M ⇒ N ∗ M | N && M | N /M | N
N ⇒ !P | P
P ⇒ n ∈ Î | t r ue | f al se | (E)

Which step of the interpreter (if any) would the following fail at?

2 (+) 3 - 6 || 3 ||

A Lexing B Parsing C Evaluating D It would pass A Lexing B Parsing C Evaluating D It would pass

4 / 5 / 6 2 - (6) -5

A Lexing B Parsing C Evaluating D It would pass A Lexing B Parsing C Evaluating D It would pass

!true && false !4 + 6

A Lexing B Parsing C Evaluating D It would pass A Lexing B Parsing C Evaluating D It would pass

1.2 + (2 - 4) false || (true && ! false)

A Lexing B Parsing C Evaluating D It would pass A Lexing B Parsing C Evaluating D It would pass

false || 1 M + E

A Lexing B Parsing C Evaluating D It would pass A Lexing B Parsing C Evaluating D It would pass

2

Problem 3: Operational Semantics [Total 15 pts]

Kids and their weird slang! How is an old man like Cliff supposed to keep up?
Consider the following rules for CringeCode, which uses "based" for true and "cringe" for false with Python as the Metalan-
guage:

Rule 1:
based ⇒ based

Rule 2:
cringe ⇒ cringe

Rule 3:
A; e1 ⇒ v1 v2 == not v1

A; e1 jk ⇒ v2
Rule 4:

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 == v1 or v2
A; e1, e2 idk ⇒ v3

Rule 5:
A, x : v (x) = v

A, x : v ; x ⇒ v
Rule 6:

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2

A; AFAIK x ’s e1. e2 ⇒ v2

Rule 7:
A; e1 ⇒ v1 A; e2 ⇒ v2 v1 == v2

A; e1is e2 ⇒ based
Rule 8:

A; e1 ⇒ v1 A; e2 ⇒ v2 v1! = v2
A; e1is e2 ⇒ cringe

Using the above rules, prove the following sentence evaluates to cringe:

A; AFAIK cliff is cringe. cliff, cringe jk idk is cringe

1

4

A, cliff : cringe; cliff ⇒ cringe

5 6

A, cliff : cringe; cringe jk → based 7

A, cliff : cringe;
3

⇒ based
8 9

2
cliff, cringe jk idk is cringe ⇒ cringe

A; AFAIK cliff is cringe. cliff, cringe jk idk is cringe ⇒
10

Blank 1: Blank 2:

Blank 3: Blank 4:

Blank 5: Blank 6:

Blank 7: Blank 8:

Blank 9: Blank 10:

3

Problem 4: Rust Features [Total 12 pts]

1 fn main () {
2 l e t m = S t r i n g : : from (" Hello ") ;
3 l e t t = S t r i n g : : from (" World ") ;
4 l e t mut z = S t r i n g : : from ("CMSC330") ;
5 { l e t w = m;
6 { l e t c = foo (w, t) ;
7 l e t d = bar (&z ,& z ,& c) ;
8 z = S t r i n g : : from (d) ;
9 }

10 } ;
11 p r i n t l n ! (" { z } ")
12 }
13
14 fn foo (a : Str ing , b : S t r i n g) −> S t r i n g {
15 i f a . len () > b . len () { a } else { b }
16 }
17
18 fn bar < ’ a , ’ b > (x :& ’ a str ,
19 y :& ’b str ,
20 p :& ’ a s t r) −> &’a s t r {
21 i f x == y { x } else { p }
22 }

Ownership
If there is no owner, write "NONE".

Who is the owner of "Hello" immediately after line 6 is run?

Who is the owner of "World" immediately after line 14 is run?

Lifetimes

What is the last line executed before "Hello" dropped?

What is the last line executed before "World" dropped?

At what line does z’s lifetime end?

At what line does c’s lifetime end?

Problem 5: OCaml Typing [Total 6 pts]

Given the following type, write an expression that matches that type. You may not use type annotations, and all pattern
matching must be exhaustive.

(a) ’a list -> (’b list -> ’a -> ’b list) -> ’b list -> int [3 pts]

Given the expression, write down its type.

(b) fun a b c -> (map c a)::[[1]] [3 pts]

Problem 6: Lambda Calculus
[Total 4 pts]

Perform a single β -reduction using the eager (call by value) evaluation strategy on the outermost expression. If you cannot
reduce it, write Beta Normal Form. Do not α-convert your final answer.

(a) (x λx . x x) (λx . x x) [2 pts]

4

Perform a single β -reduction using the lazy (call by name) evaluation strategy on the outermost expression. If you cannot
reduce it, write Beta Normal Form. Do not α-convert your final answer.

(b) (λx . x y x) ((λx . (x x)) x) [2 pts]

Problem 7: Ocaml Programming [Total 10 pts]

Recall the move function for a FSM. It takes in a character, a state, and a FSM, and it returns a list of states. Let’s modify this
a little bit. Given a partial FSM, you will move on all states with the symbol provided. Your return type will be (int * int
list) list, where the int is the state you moved on, and the int list is the states you can move to. You may not use
the rec keyword but you can make non-recursive helper functions.

type part ia l_ fsm = (i n t l i s t * (i n t * s t r i n g * i n t) l i s t) ;
(* i n t l i s t i s s tate l i s t .
(i n t * s t r i ng * i n t) l i s t i s t r ans i t i on l i s t .
l e t s ta tes = [1 ; 2 ; 3 ; 4] in
l e t trans = [(1 , " a " , 2) ; (1 , " a " , 3) ; (2 , " a " , 4)] in
l e t pfsm = (states , trans) in
move_all pfsm "a" => [(1 , [2 ; 3]) ; (2 , [4]) ; (3 , []) ; (4 , [])]
Order does not matter *)
l e t move_all pfsm symbol =

5

Problem 8: Rust Programming [Total 13 pts]

Write a lexer in Rust for the grammar: (E -> E + E | E - E | n) where n is any integer. Your tokens are "Number",
"Add", and "Sub". For examplelexer("3 + 2 - 1") returns a vector that looks like["Number","Add","Number","Sub","Number"].
Note: To seperate negative integers and subtraction, there will be a space between numbers and the subtraction symbol.
For example:

lex (" 3 − 4 ") == ["Number" , "Sub" , "Number"]
lex (" 3 −4 ") == ["Number" , "Number"]

fn lex (sentence :& s t r) −> Vec<&str >

6

Cheat Sheet
Rust

// Vectors
l e t vec = Vec : : new () ;
l e t mut vec1 = Vec ! ({ 1 , 2 , 3 , 4]) ;
vec1 [2] // returns 3
vec1 . push (5) ; // vec1 becomes [1 , 2 , 3 , 4 , 5]

l e t x = vec1 . pop () ; //x = 5 , vec1 = [1 , 2 , 3 , 4]
vec1 [0] = vec1 [0] + 1 ; // vec1 = [2 , 2 , 3 , 4]

l e t vec_s l i ce = &vec1 [1 . . 3] ;

enum Name{
Type1 ,
Type2 : S t r i n g

}

st ruct User {
ac t i ve : bool ,
username : Str ing ,

}

// regex in rust
Regex : : new(& s t r)
l e t re = Regex : : new (r " I am (\d+) years old ") ;
// Compiles a regular expression . Once compiled ,
// i t can be used repeatedly to search , s p l i t or
// replace tex t in a s t r i n g . Returns a Result Object

re . is_match (& s t r)
assert ! (re . is_match (" I am 19 years old ")) ;
// returns true i f f there i s a match anywhere
// in the s t r i n g . Returns fa lse otherwise

re . f ind (& s t r)
l e t mat = re . f ind (" I am 19 years old) ;
assert_eq ! (mat . s t a r t () , 5) ;
assert_eq ! (mat . end () , 7) ;
// Returns the s t a r t and end byte range of the
// leftmost − f i r s t match in tex t . I f no match ex is ts ,
// then None i s returned .

re . captures (& s t r)
l e t cap = re . captures (" I am 19 years old ") ;
l e t age = cap . get (1) ;
assert_eq ! (age , " 19 ") ;
// returns the capture groups of a regex . I f no
// match i s found , returns None

// looping
while guard { . . . }
while true { . . . }
// w i l l loop u n t i l the guard i s fa lse or u n t i l
// a break statement

for x in i t e r a t o r { . . . }
for i in 0 . . 5 { . . . }
for &x in vec ! [1 , 2 , 3] . i t e r () { . . . }
// w i l l i t e r a t e through an i t e r a t o r
// Many types l i k e Vectors have an i t e r a t o r
// method or s i m i l a r

// S t r i n g s and &s t r
l e t s = S t r i n g : : from (" s t r i n g ") ;
l e t s1 = " S t r i n g " ;
// s i s stored on heap
// s1 i s stored on stack

l e t mut s2 = S t r i n g : : from (" Hello ") ;
s2 . push_str (" , World ! ") ;
// s2 i s now " Hello , World ! "

// s l i c e s and substr ings
l e t a = s2 [1 . . 3] ; // a = " e l " ;

// s t r i n g methods
s . len ()
// gets length of s t r i n g .

s . i n s e r t (i32 , char) ;
s2 . i n s e r t (0 , ’ A ’) ;
// s2 i s now " AHello , World ! "

s . i n s e r t _ s t r (i32 ,& s t r) ;
s2 . i n s e r t (1 , " new ") ;
// s2 i s now "A new Hello , World ! "

s . chars ()
// returns an i t e r a t o r over the s t r i n g going
// character by character

// to throw an error
panic ! (" error msg") ;

7

Regex

* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[r1r2r3] r1 or r2 or r3 (eg. [abc] is ’a’ or ’b’ or ’c’)
[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

Ocaml Map and Fold Grammars

l e t rec map f l = match l with
[] −> []
|h : : t −> (f h) : : (map f t)

l e t rec f o l d _ l f a l = match l with
[] −> a
|h : : t −> f o l d _ l f (f a h) t

l e t rec_ fo ld_r f l a = match l with
[] −> a
|h : : t −> f h (fo ld_r f t a)

Regex λ-calc
R → ∅ e → x

| σ | λx .e
| ϵ | e e
| RR
| R |R
| R ∗

Lambda Calc and Opsem Encodings
We will give you the encodings that you will need. We will give you the opsem rules that you will need.

They may or may not look like/include the following: They may or may not look like/include the following:
λx .λy .x = true
λx .λy .y = false
e1 e2 e3 = if e1 then e2 else e3

n → n

A; e1 ⇒ v1 v2 is not v1
A; !e1 ⇒ v2

A; e1 ⇒ v1 A; e2 ⇒ v2 v3 is v1 + v2
A; e1 + e2 ⇒ v3

8

