
CMSC330 - Organization of Programming Languages
Summer 2023 - Exam 1

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• You may use anything on the accompanying reference sheet anywhere on this exam

• Please write legibly. If we cannot read your answer you will not receive credit

• You may not leave the room or hand in your exam within the last 10 minutes of the exam

• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
Q1 10
Q2 15
Q3 15
Q4 15
Q5 20
Q6 15
Q7 10

Total 100

1

Problem 1: Language Concepts [Total 10 pts]

True False
Any regular expression can be expressed as a Context Free Grammar T F
any set of strings a RE can construct, a CFG can too
let f x = x 4 is an example of a higher order function T F
f is a function that takes in another function
One could theoretically code project 1 in lambda calculus T F
it is a turing complete language, and project 1 is solveable
All statically typed languages use explicit (manifest) typing T F
Ocaml uses implicit typing but is also statically typed
FSMs are a subset of Turing Machines in terms of computational power T F
FSM can solve certain types of problems. TM can solve any solveable problem

Problem 2: Typing [Total 15 pts]

Write an expression of the following types in OCaml. You cannot use type annotations, and all pattern matching must be
exhaustive.

(a) string -> ’a -> string [2 pts]

fun x y -> x ˆ "hello" (If you do not use the second parameter, it becomes generic)

(b) ’a -> ’a -> bool -> ’a [3 pts]

fun x y z -> if z then x else y (z must be a bool and x and y must be the same type)

Given the following OCaml expressions, write down its type.

(c) fun a b -> let c = a = b in if c then 2 else 3 [2 pts]

’a -> ’a -> int (a and b are being compared and an int is being returned)

(d) fun a b c d -> if a && let x = b > c in x then d + 1 else b [3 pts]

bool -> int -> int -> int -> int (b and d must be ints, and b is being compared to c)

(e) Which of the following choices could be the type of the python lambda below? Select all that apply. [2 pts]

lambda x,y: x + y

A int -> int -> int B string -> int -> string C list -> list -> list D float -> int -> float

E None of the above you can use the + operator on lists, floats and ints

(f) Which of the following python lambdas could have the type of string list -> int list? Select all the apply. [3 pts]

A lambda x: [1,2] if x == ["hello"] else [0] B lambda x: [len(x[0])]

C lambda x: map(lambda y: len(y),x) D lambda x: len(x)

E None of the above C returns map object, D does not return a list

2

Problem 3: Regular Expressions [Total 15 pts]

(a) Which of the following strings are an exact match of the following Regular Expression? Mark all that apply. [5 pts]

ˆ[A-Z][a-z0-9]+: ([0-9]{3}|[CS330]+)$

A Major: CS B Age: 25 C Class: CS330 D Finitial: C E None

(b) Write a regular expression that accepts phone numbers of all the following formats and rejects everything else. You
may assume that any X can be any digit. [5 pts]

XXX-XXX-XXXX XXX-XXXXXXX XXXXXXXXXX (XXX)-XXX-XXXX (XXX)-XXXXXXX (XXX)XXXXXXX

((\d{3})|\d{3})((-\d{3}-?\d{4})|\d{7})

(c) Write a regular expression that would accept all strings of odd length and have at least 1 lowercase vowel (a,e,i,o,u)
and reject anything else [5 pts]

(..)*[aeiou](..)*|(..)*.[aeiou].(..)*

Problem 4: Context Free Grammars [Total 15 pts]

Consider the following Grammars:

Grammar 1 Grammar 2 Grammar 3 Grammar 4
S -> AB

A -> aAa|a
B -> bBbb|ϵ

S -> ASB|a
A -> aA|a

B -> bbB|c

S -> Sc|AB
A -> aA|a

B -> bbB|b

S -> ASB|cScc|c
A -> aaA|a
B -> bbB|b

(a) Which grammars (of 1, 2, and 3) accept both "aabbbbc" and "aaabbcc"? Select all that apply. [4 pts]

1 Grammar 1 2 Grammar 2 3 Grammar 3 N None

(b) Ambiguity [6 pts]

Yes No
"aaabbb" is an ambiguous string in Grammar 1 Y N
"aaabbc" is an ambiguous string in Grammar 2 Y N
"aaabcc" is an ambiguous string in Grammar 3 Y N

(c) Which strings are accepted by Grammar 4? Select all that apply. [5 pts]

A aaacbbb B aaacbbbb C ccaaabbbbcc D cacacbbbb E None

3

Problem 5: Finite State Machines [Total 20 pts]

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. Only the blanks will be graded. [12 pts]

NFA: Scratch Space (if needed)

0

1 2

3 4

5

a

a

a

ϵ

c

b

ϵ

DFA:

S1

S2 S3

S4 S5

E1
E2

E3
E4

E5

E6

E7

S1:
0

S2:
[1,2,3]

S3:
[1,2,4]

S4:
2

S5:
5

E1:
a

E2:
b

E3:
a

E4:
c

E5:
c

E6:
c

E7:
a

(b) Which of the following are the final states? Select all that apply [3 pts]

1 S1 2 S2 3 S3 4 S4 5 S5 N None

(c) Write a regex to describe the language of the above NFA [5 pts]

ab |ab?a?c

4

Problem 6: Lambda Calculus [Total 15 pts]

For the following questions perform a single β -reduction using eager (call by value) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.

(a) (λy .y y) ((λx .y) (λy .x y)) [2 pts]

(λy . y y) y

(b) (λx .λx .xx) (z (λa .a)) [3 pts]

λx . x x

For the following questions perform a single β -reduction using lazy (call by name) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.

(c) (λy .y y) ((λx .y) (λy .x y)) [2 pts]

((λx .y) (λy .x y)) ((λx .y) (λy .x y))

(d) (λx .λx .xx) (z (λa .a)) [3 pts]

λx . x x

(e) Which of the following is alpha equivalent to (λx .xλx .x y)? Select all that apply. [2 pts]

A (λz .zλx .z y) B (λy .yλx .x y) C (λz .zλx .x y) D (λx .xλy .y z) G None

(f) Convert the following to Beta Normal Form: (λz .λx .xz) (λy .y y)c [3 pts]

A c B (λx .x x)c C c (λy .y y) D λx .x (c c) E c c F Infinite Recursion G None

5

Problem 7: Python Programming [Total 10 pts]

(a) Write a function mur that has the same functionality of map, but uses reduce. [4 pts]

def mur (f , l s t) :
return reduce (___BLANK____)

#mur (lambda x : x + 1 , [1 , 2 , 3]) => [2 , 3 , 4]
#mur (lambda x : len (x) , [[1 , 2 , 3] , [4 , 5] , [6]]) => [3 , 2 , 1]
#mur (lambda x : x , [1 , 2 , 3]) => [1 , 2 , 3]

Blank:

lambda a h: a + [f(h)], lst, []

(b) Write a function sumnum that takes in a formatted string and returns the sum of all the numbers found in that string. [6 pts]

#sumnum(" I have 2 apples and 30 oranges ") => 32
#sumnum(" There are no numbers here ") => 0
#sumnum(" I can have negatives l i k e −2 and −4 ") => −6

def sumnum(s) :

return sum(map(lambda x: float(x), re.findall(r"-?[0-9]+"))

6

