CMSC330-Organization of Programming Languages Summer 2023-Exam 1

CMSC330 Course Staff
University of Maryland
Department of Computer Science

Name: \qquad

UID: \qquad

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature: \qquad

Ground Rules

- You may use anything on the accompanying reference sheet anywhere on this exam
- Please write legibly. If we cannot read your answer you will not receive credit
- You may not leave the room or hand in your exam within the last 10 minutes of the exam
- If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question	Points
Q1	10
Q2	15
Q3	15
Q4	15
Q5	20
Q6	15
Q7	10
Total	100

Problem 1: Language Concepts

Any regular expression can be expressed as a Context Free Grammar
any set of strings a RE can construct, a CFG can too
let $f x=x 4$ is an example of a higher order function f is a function that takes in another function One could theoretically code project 1 in lambda calculus it is a turing complete language, and project 1 is solveable All statically typed languages use explicit (manifest) typing

FSM can solve certain types of problems. TM can solve any solveable problem

Problem 2: Typing

Write an expression of the following types in OCaml. You cannot use type annotations, and all pattern matching must be exhaustive.
(a) string -> 'a -> string
fun $x y->x^{\wedge}$ "hello" (If you do not use the second parameter, it becomes generic)
(b) 'a -> 'a -> bool -> 'a

$$
\text { fun } x y z->\text { if } z \text { then } x \text { else } y \text { (} z \text { must be a bool and } x \text { and } y \text { must be the same type) }
$$

Given the following OCaml expressions, write down its type.
(c) fun $a b->$ let $c=a=b$ in if c then 2 else 3
' a -> ' a -> int (a and b are being compared and an int is being returned)
(d) fun $a b c d->$ if $a \& \&$ let $x=b>c$ in x then $d+1$ else b

```
bool -> int -> int -> int -> int (b and d must be ints, and b is being compared to c)
```

(e) Which of the following choices could be the type of the python lambda below? Select all that apply.
lambda $x, y: x+y$

$$
\text { A int }->\text { int }->\text { int } \quad \text { B } \text { string }->\text { int }->\text { string } \quad \text { C list }->\text { list }->\text { list } \quad \text { Dloat }->\text { int }->\text { float }
$$

(E) None of the above you can use the + operator on lists, floats and ints
(f) Which of the following python lambdas could have the type of string list -> int list? Select all the apply.
A lambda $x:[1,2]$ if $x==[" h e l l o "]$ else [0]
(C) lambda x : map(lambda y : len(y), x)
(E) None of the above
(B) lambda $x:[\operatorname{len}(x[0])]$
(D) lambda $x: \operatorname{len}(x)$
C returns map object, D does not return a list

Problem 3: Regular Expressions

(a) Which of the following strings are an exact match of the following Regular Expression? Mark all that apply.
${ }^{\wedge}[A-Z][a-z 0-9]+:([0-9]\{3\} \mid[C S 330]+) \$$

Major: CS
(B) Age: 25

C Class: CS330
Finitial: C
(E) None
(b) Write a regular expression that accepts phone numbers of all the following formats and rejects everything else. You may assume that any X can be any digit.

XXX-XXX-XXXX XXX-XXXXXXX \quad XXXXXXXXXXX (XXX)-XXX-XXXX (XXX)-XXXXXXX (XXX)XXXXXXXX
$((\backslash d\{3\}) \mid \backslash d\{3\})((-\backslash d\{3\}-? \backslash d\{4\}) \mid \backslash d\{7\})$
(c) Write a regular expression that would accept all strings of odd length and have at least 1 lowercase vowel (a,e,i,o,u) and reject anything else

$(.) *.[$ aeiou $](.) * \mid.(.)$.$* .[aeiou].(..)*$

Problem 4: Context Free Grammars

Consider the following Grammars:

$$
\begin{array}{ccc|c}
\text { Grammar } 1 & \text { Grammar } 2 & \text { Grammar } 3 & \text { Grammar } 4 \\
\mathrm{~S} \rightarrow \mathrm{AB} & \mathrm{~S} \rightarrow \mathrm{ASB} \mid \mathrm{a} & \mathrm{~S} \rightarrow \mathrm{Sc} \mid \mathrm{AB} & \mathrm{~S} \rightarrow \mathrm{ASB}|\mathrm{cScc}| \mathrm{c} \\
\mathrm{~A} \rightarrow \mathrm{aAa} \mid \mathrm{a} & \mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{a} & \mathrm{~A} \rightarrow \mathrm{aA} \mid \mathrm{a} & \mathrm{~A} \rightarrow \mathrm{aaA} \mid \mathrm{a} \\
\mathrm{~B} \rightarrow \mathrm{bBbb} \mid \epsilon & \mathrm{B} \rightarrow \mathrm{bbB} \mid c & \mathrm{~B} \rightarrow \mathrm{bbB} \mid b & \mathrm{~B} \rightarrow \mathrm{bbB} \mid \mathrm{b}
\end{array}
$$

(a) Which grammars (of 1,2 , and 3) accept both "aabbbbc" and "aaabbcc"? Select all that apply.
(1) Grammar 1 Grammar 2 (3) Grammar 3 None
(b) Ambiguity

(c) Which strings are accepted by Grammar 4? Select all that apply.
[6 pts]
[5 pts]
aaacbbb
(B) aaacbbbb
(C) ccaaabbbbcc
(D) cacacbbbb
(E) None

Problem 5: Finite State Machines

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA provided with the right nodes and transitions. Only the blanks will be graded.

```
NFA: Scratch Space (if needed)
```


DFA:

(b) Which of the following are the final states? Select all that apply
[3 pts]
(1) S 1
(2) S 2
S3
(4) S_{4}
S5
(N) None
(c) Write a regex to describe the language of the above NFA
\square

Problem 6: Lambda Calculus

For the following questions perform a single β-reduction using eager (call by value) evaluation on the outermost expression. If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.
(a) $(\lambda y \cdot y y)((\lambda x \cdot y)(\lambda y \cdot x y)) \quad[2 \mathrm{pts}]$

$$
(\lambda y \cdot y y) y
$$

(b) $(\lambda x \cdot \lambda x \cdot x x)(z(\lambda a \cdot a))$

$\lambda x . x x$

For the following questions perform a single β-reduction using lazy (call by name) evaluation on the outermost expression. If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.
(c) $(\lambda y \cdot y y)((\lambda x \cdot y)(\lambda y \cdot x y)) \quad$ [2 pts]

$$
((\lambda x \cdot y)(\lambda y \cdot x y))((\lambda x \cdot y)(\lambda y \cdot x y))
$$

(d) $(\lambda x \cdot \lambda x \cdot x x)(z(\lambda a \cdot a))$

$\lambda x . x x$

(e) Which of the following is alpha equivalent to $(\lambda x \cdot x \lambda x \cdot x y)$? Select all that apply.
(A) $(\lambda z . z \lambda x . z y)$
(B) $(\lambda y \cdot y \lambda x \cdot x y)$
$(\lambda z . z \lambda x \cdot x y)$ (D) $(\lambda x . x \lambda y \cdot y z)$
(G) None
(f) Convert the following to Beta Normal Form: $(\lambda z . \lambda x . x z)(\lambda y . y y) c$
(A) c
(B) $(\lambda x \cdot x x) c$
C $c(\lambda y . y y)$
(D) $\lambda x \cdot x(c c)$
(E) $c c$
(F) Infinite Recursion
(G) None

Problem 7: Python Programming

(a) Write a function mur that has the same functionality of map, but uses reduce.

```
def mur(f,lst):
    return reduce(___BLANK_
```

\qquad

``` _)
\#mur(lambda \(x: x+1,[1,2,3])=>[2,3,4]\)
\#mur(lambda \(x: \operatorname{len}(x),[[1,2,3],[4,5],[6]])=>[3,2,1]\)
\#mur(lambda x: x,[1,2,3]) => [1,2,3]
Blank:
```

> lambda a h: a + [f(h)], lst, []
(b) Write a function sumnum that takes in a formatted string and returns the sum of all the numbers found in that string. [6 pts]

```
#sumnum("I have 2 apples and 30 oranges") => 32
#sumnum("There are no numbers here") => o
#sumnum("। can have negatives like -2 and -4") => -6
def sumnum(s):
    return sum(map(lambda x: float(x), re.findall(r"-?[0-9]+"))
```

