Quiz 2 - OCaml

Q1 OCaml Typing

4 Points

« For the following two sub-questions, you are not allowed to use type annotations.
« All pattern matching must be exhaustive.
« No other warnings should be raised.

Q11 Ocaml Typing
2 Points

Write an OCaml expression of type int -> string -> bool

fun x y ->x =int_of_string y

Q1.2 OCaml Typing
2 Points

Write an OCaml expression of type ('a -=> 'b) -=> 'a -=> 'e¢ -=> 'b

funxyz=zy

Q2 OCaml Typing2

4 Points

Q21 OCaml Typing2
2 Points

Write the type of the following expression
let rec fpxys=

match x, y with

|[]r[] -> []
| , _ -> failwith "error”

(a-=>'b->'c)->('a"'a)list->"'b list->('c * 'c) list

Q2.2 OCaml Typing2
2 Points

Write the type of the following expression
let fpxy=map (p x) vy

(a->'b->'c)->"a->"blist ->'c list

Q3 Fill in the Blank

6 Points

Given the following fold implementation, implement a function called
‘min_and_max which given a list of integers between 1 and 100 inclusive returns a
tuple whose first value is the minimum value in the list and whose second value is
the maximum value in the list. You can assume the list will not be empty.

let rec fold £ a xs = match xs with
(] -> a
|x::xt -> fold £ (f a x) xt

Examples:

min and max [4;5;3;8] = (3, 8)
min and max [10; 23; 5; 79] = (5, 79)

Note: You are not allowed to use the List module.

Prompt:

let min_and max lst = fold (#1) (#2) 1lst

Blank #1:

(fun(a,b) c->

letmin =ifa<cthenaelsecin
letmax =ifb>cthenb else cin
(min,max))

Blank #2:

(100))

Q4 OCaml Coding

6 Points

Write a function "sumtiply,” which returns a new list of multiplications between sum
of all elements of Ist1 and each element of Ist2.

» You can assume that Ist1 will not be empty.

* You can create helper functions but the rec keyword should not be used.

« You can use the following definitions of Map and Fold, but you cannot use the
List module

let rec map £ 1 = match 1 with
(1-> []

|h::t => (£ h)::(map £ t);;

let rec fold £ a 1 = match 1 with

[]->a
|h::t -> fold £ (f a h) t;;

For Example:
sumtiply [1;2;3;4;5) [1;3;5;7;9) = [15;45;75;105;135)

let sumtiply 1112 = let sum = fold (+) O I in map (fun x > sum * x) 12

