CMSC330 - Organization of Programming Languages Fall 2023 - Exam 2 Solutions

CMSC330 Course Staff
University of Maryland
Department of Computer Science

Name: \qquad

UID: \qquad

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature: \qquad

Ground Rules

- You may use anything on the accompanying reference sheet anywhere on this exam
- Please write legibly. If we cannot read your answer you will not receive credit
- You may not leave the room or hand in your exam within the last 10 minutes of the exam
- If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question	Points
P1	8
P2	15
P3	12
P4	10
P5	20
P6	20
Total	85

Problem 1: Language Concepts

One could theoretically write project 3 in Lambda Calculus
 it is not possible to encode concepts such as True and False with it.
lots of things including Booleans can be encoded in the Lambda Calculus

Problem 2: Lambda Calculus

[Total 15 pts]
(a) Lazy Evaluation, Single Step: Perform a single step of Beta Reduction using the Lazy / Call by Name Evaluation Strategy on the given Lambda Calculus expression. If the expression cannot be reduced, select "Beta Normal Form".
$(a \lambda x . x a)((\lambda y, y) b)$
(y y) ($\lambda x . x a)$
$(\lambda x . \lambda y \cdot x y)((\lambda b . b b) a)$
(A) $a \lambda x \cdot x a$
(A) $(\lambda x, x a)(\lambda x, x a)$
(A) $(\lambda x \cdot \lambda y \cdot x y)(a a)$
(B) $\lambda x \cdot x((\lambda y . y) b)$
(B) $(\lambda x, x a)$

B $(\lambda y \cdot((\lambda b \cdot b b) a) y)$
$(a \lambda x, x a)(b)$
(D) Beta Normal Form
(C) $(y y) a$
(C) $\lambda x \cdot(y y) x$
(D) Beta Normal Form
(E) None of the above
(E) None of the above
(E) None of the above
(b) Eager Evaluation, Single Step: As before, perform a single step of Beta Reduction but this time use the Eager / Call by Value Evaluation Strategy.
$(a \lambda x . x a)((\lambda y . y) b)$
(y y) ($\lambda x . x a)$
$(\lambda x . \lambda y . x y)((\lambda b . b b) a)$
(A) $a \lambda x \cdot x a$
(A) $(\lambda x, x a)(\lambda x, x a)$

A $(\lambda x \cdot \lambda y \cdot x y)(a a)$
(B) $\lambda x \cdot x((\lambda y . y) b)$
(B) $(\lambda x, x a)$
(B) $(\lambda y \cdot((\lambda b . b b) a) y)$
C) $(a \lambda x, x a)(b)$
(C) $(y y) a$
(C) $\lambda x \cdot\binom{y}{y} x$

D Beta Normal Form
(E) None of the above
(D) Beta Normal Form
(E) None of the above
(D) Beta Normal Form
(E) None of the above
(c) Reduce to Normal Form: Convert the following to Beta Normal Form: $(\lambda x \cdot(\lambda y . x a) b)(\lambda x . a x)$

A) $\lambda x . a x$	B $c d$	(C) $b a$
(E) Can't reduce	(F) infinite recursion	(G) None

Problem 3: Context Free Grammars

Consider the following Grammar:

```
E -> aSSc
S -> aSb|bSc|T
T -> a|b|c
```

(a) Which of the following strings are grammatically correct? Select all that apply.
(A) $a \mathrm{ab}$
abccaabc
(C) $a b a c b c c$
(D) abbac
(E) None
(b) Prove that this grammar is ambiguous using the string abbccc
$\mathrm{E} \rightarrow \mathrm{aSSc} \rightarrow \mathrm{abScSc} \rightarrow \mathrm{abTcSc} \rightarrow \mathrm{abbcSc} \rightarrow a b b c T c \rightarrow a b b c c c$
$E \rightarrow a S S c \rightarrow a T S c \rightarrow a b S c \rightarrow a b b S c c \rightarrow a b b T c c \rightarrow a b b c c c$

Problem 4: Lexing Parsing and evaluating

Given the following CFG, and assuming strong, static typing as is used in OCaml, at what stage of language processing would the nearby expressions fail? Mark 'Valid' otherwise.

$$
\begin{aligned}
E & \Rightarrow+E E|* E E|-E E|/ E E| X \\
X & \Rightarrow \text { and } X X \text { or } X X \mid P \\
P & \Rightarrow \text { true } \mid \text { false } \mid n \in \text { Positive Numbers }
\end{aligned}
$$

You may assume this is simple prefix notation for common mathematical and logical semantics
Constraint: The parser in use will reject strings that have "leftover" input that does not fit into a single parse tree.
$2 * 3+23$

- 45
- + 123
and 25
$5 \exp 2+6$
* 2 and true false
and true or false false
false true
true and false or true

42

Lexer	Parser	Evaluator	Valid
(L)	P	E	V

(P)
(E)
(V)
(L)
(P)
(E)
(V)

(P)
(E)

(E)

(L)

(V)
(L)
(L)
(P)
(E)

Problem 5: OCaml Programming

The following variant type defines a binary tree.

```
type 'a tree = Leaf of 'a | Node of 'a tree * 'a * 'a tree
```

Write a function called jumping_layers that returns a 'a list * 'a list where the first list has all the 'a items from the even indexed tree layers and the second list has all the items from the odd tree layers. The order of items in the lists does not matter.
Examples:

```
t-> 1
    /\
    2 3
Node(Leaf(2),
        1,
        Leaf(3))
=> ([1], [2,3])
    even odd
```

```
t-> 1
```

t-> 1
/\
/\
2 3
2 3
/\
/\
4
4
Node(Node(Leaf(4),
Node(Node(Leaf(4),
2,
2,
Leaf(5)),
Leaf(5)),
1,
1,
Leaf(3))
Leaf(3))
=> ([1,4,5], [2,3])
=> ([1,4,5], [2,3])
even odd

```
    even odd
```

You may define recursive helper function(s) as you find them useful.

```
let even_odd_layers t =
    let rec jl t iseven =
        match t with
                Leaf(x) -> if iseven then ([x],[]) else ([],[x])
        |Node(l,v,r) -> let e1,o1 = jl l (not iseven) in
                            let e2,o2 = jl r (not iseven) in
                                if iseven then (v::(e1@e2),o1@o2)
                                else (e1@e2,v::(o1@o2))
    in jl t true
```


Problem 6: Operational Semantics

Consider the following rules for RNACODE, using OCaml as the Metalanguage:

$$
\overline{\mathrm{TTT} \rightarrow \mathrm{TTT}}
$$

$$
\frac{A ; e_{1} \Rightarrow v_{1} \quad v_{1}=\mathrm{GGG}}{A ; \text { Lysine? } e_{1} \Rightarrow \mathrm{GGG}}
$$

$$
\frac{A, \mathrm{x}: v(\mathrm{x})=v}{A, \mathrm{x}: v ; \mathrm{x} \Rightarrow v}
$$

$$
\overline{\mathrm{GGG} \rightarrow \mathrm{GGG}}
$$

$$
\begin{gathered}
\frac{A ; e_{1} \Rightarrow v_{1} \quad v_{1}<>\mathrm{GGG}}{A ; \text { Lysine? } e_{1} \Rightarrow \mathrm{TTT}} \\
\frac{A ; e_{1} \Rightarrow v_{1} \quad A, \mathrm{x}: v_{1} ; e_{2} \Rightarrow v_{2}}{A ; \text { ENCODE } \times \text { AS } e_{1} ; e_{2} \Rightarrow v_{2}}
\end{gathered}
$$

$$
\frac{A, x: v_{1}, y: v_{2} ; x \Rightarrow v_{1} \quad A, x: v_{1}, y: v_{2} ; y \Rightarrow v_{2} \quad A, x: v_{2}, y: v_{1} ; e \Rightarrow v}{A, x: v_{1}, y: v_{2} ; \operatorname{SWAP} x y \text { in } e \Rightarrow v}
$$

Complete the Opsem proof for the following program:

$$
\text { A,y:TTT; ENCODE x AS GGG; SWAP x y in Lysine? } x \Rightarrow \text { TTT }
$$

$$
\begin{array}{llll}
\\
\hline A, \mathrm{y}: \mathrm{TTT} ; G G G \Rightarrow G G G & \frac{A, \mathrm{y}: \mathrm{TTT}, \mathrm{x}: \mathrm{GGG}(\mathrm{x})=G G G}{A, \mathrm{y}: \mathrm{TTT}, \mathrm{x}: \mathrm{GGG} ; \mathrm{x} \Rightarrow G G G} \quad \frac{A, \mathrm{y}: \mathrm{TTT}, \mathrm{x}: \mathrm{GGG}(\mathrm{y})=T T T}{A, \mathrm{y}: \mathrm{TTT}, \mathrm{x}: \mathrm{GGG} ; \mathrm{y} \Rightarrow T T T} \quad \begin{array}{l}
\frac{A, \mathrm{y}: \mathrm{GGG}, \mathrm{x}: \mathrm{TTT}(\mathrm{x})=T T T}{A, \mathrm{y}: \mathrm{GGG}, \mathrm{x}: \mathrm{TTT} ; \mathrm{x} \Rightarrow T T T} \quad T T T<>G G G \\
A, \mathrm{y}: \mathrm{GGG}, \mathrm{x}: \mathrm{TTT} ; \mathrm{Lysine} ? \mathrm{x} \Rightarrow T T T
\end{array} \\
\hline
\end{array}
$$

$A, \mathrm{y}:$ TTT; ENCODE x AS GGG ; SWAP x y in Lysine? $\mathrm{x} \Rightarrow$ TTT

Cheat Sheet

OCaml

```
(* Lists *)
let lst = []
let lst = [1;2;3;4]
(* :: (cons) has type 'a->'a list -> 'a list *)
1::2::3::[] = [1;2;3]
(* @ (append) has type 'a list -> 'a list-> 'a list *)
[1;2;3] @ [4;5;6] = [1;2;3;4;5;6]
(* variants *)
type linkedlist = Cons of int * linkedlist|Nil
Cons(1,Cons(2,Cons(3,Nil)))
```

```
(* Anonymous Functions *)
(fun a b c -> a + b + c *)
(* Map and Fold *)
let rec map f l = match l with
    [] -> []
    |x::xs -> (f x)::(map f t)
let rec fold_left f a l = match l with
    [] -> a
    |x::xs -> fold_left f (f a x) xs
let rec fold_right f l a = match l with
    |[] -> a
    |x::xs -> f x (fold_right f xs a)
```


Lambda Calc Encodings

We will give you the encodings that you will need. They may or may not look like/include the following:
$\lambda x . \lambda y . x=$ true
$\lambda x . \lambda y . y=$ false
$e_{1} e_{2} e_{3}=$ if e_{1} then e_{2} else e_{3}

