
CMSC330 - Organization of Programming Languages
Fall 2023 - Exam 2

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules
• You may use anything on the accompanying reference sheet anywhere on this exam
• Please write legibly. If we cannot read your answer you will not receive credit
• You may not leave the room or hand in your exam within the last 10 minutes of the exam
• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
P1 8
P2 15
P3 12
P4 10
P5 20
P6 20

Total 85

1

Problem 1: Language Concepts [Total 8 pts]

True False
One could theoretically write project 3 in Lambda Calculus T F

Regular Expressions have computational power that is equivalent to Turing Machines. T F

If a language’s grammar is changed, then the parser must be modified T F

fun a b -> a b is an example of a higher order function in Ocaml T F

If a function f is acceptable input to fold left, then it is also acceptable for fold right T F

Operational Semantics describes the meaning of language through operations that T F
will be performed.

Lexers typically identify problems with inputs that don’t obey a grammar such T F
as forgetting a closing parentheses in an expression like 91*(21 + 5

Because the Pure Lambda Calculus only has Functions, Applications, and Variables, T F
it is not possible to encode concepts such as True and False with it.

Problem 2: Lambda Calculus [Total 15 pts]

(a) Lazy Evaluation, Single Step: Perform a single step of Beta Reduction using the Lazy / Call by Name Evaluation Strategy
on the given Lambda Calculus expression. If the expression cannot be reduced, select “Beta Normal Form”.

(a λx . x a) ((λy . y) b)

A a λx .x a

B λx . x ((λy . y) b)
C (a λx . x a) (b)
D Beta Normal Form
E None of the above

(y y) (λx . x a)

A (λx . x a) (λx . x a)
B (λx . x a)
C (y y) a
D Beta Normal Form
E None of the above

(λx . λy . x y) ((λb . b b) a)

A (λx . λy . x y) (a a)
B (λy . ((λb . b b) a) y)
C λx . (y y) x
D Beta Normal Form
E None of the above

(b) Eager Evaluation, Single Step: As before, perform a single step of Beta Reduction but this time use the Eager / Call by
Value Evaluation Strategy.

(a λx . x a) ((λy . y) b)

A a λx .x a

B λx . x ((λy . y) b)
C (a λx . x a) (b)
D Beta Normal Form
E None of the above

(y y) (λx . x a)

A (λx . x a) (λx . x a)
B (λx . x a)
C (y y) a
D Beta Normal Form
E None of the above

(λx . λy . x y) ((λb . b b) a)

A (λx . λy . x y) (a a)
B (λy . ((λb . b b) a) y)
C λx . (y y) x
D Beta Normal Form
E None of the above

(c) Reduce to Normal Form: Convert the following to Beta Normal Form: (λx .(λy .xa)b) (λx .ax)

A λx .ax B c d C b a D a a

E Can’t reduce F infinite recursion G None

2

Problem 3: Context Free Grammars [Total 12 pts]

Consider the following Grammar:

E -> aSSc

S -> aSb|bSc|T

T -> a|b|c

(a) Which of the following strings are grammatically correct? Select all that apply.

A aab B abccaabc C abacbcc D abbac E None

(b) Prove that this grammar is ambiguous using the string abbccc

Problem 4: Lexing Parsing and evaluating [Total 10 pts]

Given the following CFG, and assuming Ocaml’s typing, at what stage of language processing would the nearby expressions
fail? Mark ‘Valid’ otherwise.

E ⇒+ E E | ∗ E E | − E E | / E E |X
X ⇒and X X |or X X | P
P ⇒true | false | n ∈ Positive Numbers

You may assume this is simple prefix notation for common mathematical and logical semantics
Constraint: The parser in use will reject strings that have “leftover” input that does not fit into a single parse tree.
Constraint: You may assume there are tokens for only the terminal characters.

Lexer Parser Evaluator Valid
2 * 3 + 2 3 L P E V

^ 4 5 L P E V

- + 1 23 L P E V

and 2 5 L P E V

5 exp 2 + 6 L P E V

* 2 and true false L P E V

and true or false false L P E V

false true L P E V

true and false or true L P E V

42 L P E V

3

Problem 5: OCaml Programming [Total 20 pts]

The following variant type defines a binary tree.

type ’a tree = Leaf of ’a | Node of ’a tree * ’a * ’a tree

Write a function called even_odd_layers that returns a ’a list * ’a list where the first list has all the ’a items
from the even indexed tree layers and the second list has all the items from the odd tree layers. The order of items in the
lists does not matter.
Examples:
t-> 1

/ \

2 3

Node(Leaf(2),

1,

Leaf(3))

=> ([1], [2,3])

even odd

t-> 1

/ \

2 3

/ \

4 5

Node(Node(Leaf(4),

2,

Leaf(5)),

1,

Leaf(3))

=> ([1,4,5], [2,3])

even odd

t-> 1

Leaf(1)

=> ([1],[])

even odd

You may define recursive helper function(s) as you find them useful.
HINT: Higher-order functions are not so useful for this problem in favor a more tailored approach.

let even_odd_layers t =

4

Problem 6: Operational Semantics [Total 20 pts]

Consider the following rules for RNACODE, using OCaml as the Metalanguage:

TTT → TTT GGG → GGG

A; e1 ⇒ v1 v1 = GGG
A; Lysine? e1 ⇒ GGG

A; e1 ⇒ v1 v1 <> GGG
A; Lysine? e1 ⇒ TTT

A, x : v (x) = v

A, x : v ; x ⇒ v

A; e1 ⇒ v1 A, x : v1; e2 ⇒ v2

A; ENCODE x AS e1 ; e2 ⇒ v2

A, x : v1, y : v2; x ⇒ v1 A, x : v1, y : v2; y ⇒ v2 A, x : v2, y : v1; e ⇒ v

A, x : v1, y : v2; SWAP x y in e ⇒ v

Complete the Opsem proof for the following program:

A,y:TTT; ENCODE x AS GGG; SWAP x y in Lysine? x⇒ TTT

A, y : TTT, x : GGG; x ⇒ GGG

; x ⇒ TTT

A, y : GGG, x : TTT; ⇒ TTT

A, y : TTT, x : GGG; ⇒ TTT

A, y : TTT; ENCODE x AS GGG ; SWAP x y in Lysine? x ⇒

5

6

Cheat Sheet
OCaml
(* L i s t s *)
l e t l s t = []
l e t l s t = [1 ; 2 ; 3 ; 4]

(* : : (cons) has type ’a−> ’a l i s t −> ’ a l i s t *)
1 : : 2 : : 3 : : [] = [1 ; 2 ; 3]

(* @ (append) has type ’ a l i s t −> ’ a l i s t −> ’ a l i s t *)
[1 ; 2 ; 3] @ [4 ; 5 ; 6] = [1 ; 2 ; 3 ; 4 ; 5 ; 6]

(* var iants *)
type l i n k e d l i s t = Cons of i n t * l i n k e d l i s t | N i l
Cons (1 , Cons (2 , Cons (3 , N i l)))

(* Anonymous Functions *)
(fun a b c −> a + b + c *)

(* Map and Fold *)
l e t rec map f l = match l with

[] −> []
| x : : xs −> (f x) : : (map f t)

l e t rec f o l d l e f t f a l = match l with
[] −> a

| x : : xs −> f o l d l e f t f (f a x) xs

l e t rec f o l d r i g h t f l a = match l with
| [] −> a
| x : : xs −> f x (f o l d r i g h t f xs a)

Lambda Calc Encodings

We will give you the encodings that you will need. They may or may not look like/include the following:
λx .λy .x = true
λx .λy .y = false
e1 e2 e3 = if e1 then e2 else e3

7

