
Chapter 1

Higher Order Functions

Higher Order Functions? More like
lower suggestion inabilities

Klef

1.1 Intro

We cover this topic in Ocaml so the examples here will be mostly written in Ocaml. A variation of this chapter written
primarily in Python has been made as well.

1.2 Functions as we know them

Let us first define a function. A function is something that takes in input, or an argument, and then returns a value. As
programmers, we typically think of functions as a thing that takes in multiple inputs and then returns a value. Technically,
this is syntactic sugar for the most part (but that’s a different chapter). The important idea now is that we have a process
that has some sort of starting values, and then ends up with some other final value.

In the past, functions may have looked liked any of the following:

\\ java
i n t area ( i n t length , i n t width ) {

return length * width ;
}
/* C */
i n t max( i n t * arr , i n t arr_ length ) {

i n t max = arr [ 0 ]
for ( i n t i = 1 ; i < arr_ length ; i ++ )

i f arr [ I ] > max
max = arr [ i ] ;

return max ;
}

# Ruby
def char −sum( s t r )

sum = 0
s t r . . each_char { | i | sum += i . ord }
sum

end

1
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# python
def spam( x ) :

return x − 1

( * OCaml * )
l e t circumference radius = 3 . 1 4 * . 2 . * . radius

// Rust
fn foo ( x : i 3 2 ) {
l e t y = x + 2 ;
y

}

In these functions, our inputs were things like data structures, or ’primitives’. Ultimately, our inputs were some sort of
data type supported by the language. Our return value is the same, could be a data structure, could be a ’primitive’, but
ultimately some data type that is supported by the language.

This should hopefully all be straightforward, a review and pretty familiar. Notice there are 3 (I would say 4) parts of a
function. We have the function name, the arguments, and the body (and then I would include the return type or value as
well). Again this shouldn’t be new, just wanted this here so we are all on the same page.

1.3 Functions as Data

Let’s consider the C code:

1 int foo = 3;
2
3 int bar(){
4 return 3;
5 }
6
7 int main(){
8 int y = bar() + foo;
9 printf("%d\n",y);

10 return 1;
11 }

What exactly is happening here? We could say in line 1, we are allocating a segment in memory, binding that memory
address to the human readable name foo and then storing 3 in that memory location.

What about lines 3-5? How is bar stored in memory? If we consider what is going on in the machine (Maybe recall from
216), then we know that any piece of data is just 1s and 0s stored at some memory address. The variable name helps us
know which memory address we are storing things (so we don’t have to remember what we stored at address 0x012f or
something). When we want to then refer to that data, we use the memory address (variable name) and we retrieve that data.
Why should a function be any different?

In this case, we are allocating a segment in memory (in the code part, rather than stack or heap), binding that memory
segment to a human readable name bar, and then storing the code that represents the function to that location.

We can then treat the bar variable like we would treat any other variable. To be clear, they still follow the variable rules
that other variables have. 3 + x is only valid if x is an int or similar. So bar can only be used where we expect a function
(bar + 3 fails because we are treating bar as a number instead of a function).

1.4 Higher Programming

As we said, functions take in arguments that can be any data type supported by the language. A higher order programming
language is one where functions themselves are considered a data type. We’ve seen this in OCaml, but let’s take a deeper
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look at it now.
Let us consider the following C program:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int add1(int x){
6 return x + 1;
7 }
8 int sub1(int x){
9 return x - 1;

10 }
11
12 // return a function pointer
13 int* getfunc(){
14 int (*funcs[2])(int) = {sub1, add1};
15 return funcs[rand()%2];
16 }
17
18 // take in a function pointer
19 void apply(int f(int), int arg1){
20 int ret = (*f)(arg1);
21 printf("%d\n",ret);
22 }
23
24 int main(){
25 int i;
26 srand(time(NULL));
27 for(i = 0; i < 5; i++){
28 apply(getfunc(),3); //playing with pointers
29 }
30 }

This program has one function that returns a function pointer and one function that takes in a function pointer. The idea
of this is the basis of allowing functions to be treated as data. For most languages, we have the ability to bind variables to
data.

i n t x = 3 ; // C , Java
y = 4 # Ruby
l e t z = 4 . 2 ; ; ( * OCaml * )
// idea
// var iab le = data

If we consider what is going on in the machine (maybe recall from 216), then we know that any piece of data is just 1s and 0s
stored at some memory address. The variable name helps us know the memory address at which we are storing things (so
we don’t have to remember what we stored at address 0x012f or something). When we want to then refer to that data, we
use the memory address (variable name) and we retrieve that data. Why should a function be any different? We previously
saw a pointer to a function being passed around, which just means the pointer to a list of procedures that are associated
with the function.

So in the case of higher order programming, we are allowing functions to be passed in as arguments or be returned as
data.

Thus, we can say that a higher order function is one that takes in or returns another function. We can also avoid all
these void pointers and casting and stuff in most functional languages like OCaml:

1 (* takes in a function)
2 let apply f x = f x;;
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3 (* returns a function *)
4 let get_func = let add1 x = x + 1 in add1;;

1.5 Anonymous Functions

So we just said that we bind data to variables if we want to use them again. Sometimes though, we don’t want to use
them again, or we have no need to store a function for repeated use. So we have this idea of anonymous functions. It is
anonymous because it has no variable name, which also means we cannot refer to it later. The syntax of an anonymous
function is

1 (* add 1 *)
2 fun x -> x + 1
3 (* add *)
4 fun x y -> x + y
5 (* general syntax *)
6 (* fun var1:t1 var2:t2 ... varx:tx -> e:ty *)
7 (* has type (t1 -> t2 -> ... -> tx -> ty) *)

The difference between 2 + 3 and let x = 2 + 3 corresponds to the difference between fun x -> x + 1 and let
x = fun x -> x + 1. This means that we can do the same thing by doing something like

1 2 + 3 (* expression by itself, no variable *)
2 let x = 2 + 3 (* expression then bound to a variable *)
3 fun x -> x + 1 (* function by itself, no variable *)
4 let add1 = fun x -> x + 1 (* function bound to variable *)

This means let add1 x = x + 1 is just syntactic sugar of let add1 = fun x -> x + 1. This is because OCaml and
other functional programming languages are based on this thing called lambda calculus, which is another chapter. But if we
think about our mathematical definition of a function, it is something that takes in 1 input and returns 1 output. So if each
function should have 1 input, then what about something like let plus x y = x + y?

1.6 Partial Applications

Recall a section or something ago when we said that higher order functions can take in functions as arguments and return
functions as return values. Consider:

1 let plus x y = x + y
2 (* int -> int -> int *)

We said earlier that functions have types, where the last thing in the type is the return value, and the first few items are the
input types. We kinda lied. Let us consider:

l e t plus x y = x + y
( * i n t −> i n t −> i n t * )
l e t plus x = fun y −> x + y
( * i n t −> i n t −> i n t * )
( * i n t −> ( i n t −> i n t ) * )

This last function does have type int -> int -> int but consider what the syntax says. plus is a function that takes in
an int but then returns a function that itself takes in an int and returns an int. Which means we can actually define plus
as

1 let plus = fun x -> fun y -> x + y;;

If we can define functions like this then we can do things like

1 let plus = fun x -> fun y -> x + y
2 let add3 = plus 3 (* returning fun y -> 3 + y *)
3 add3 5 (* returns 8 *)
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This is called a partial application of a function, or the process of currying. Not all functional languages support this unless
the function is specifically defined as one which returns a function.

It is important to note here that you can only partially apply variables in the order used in the function declaration. That
is a function like let add = fun x -> fun y -> x + y can only partially apply the x variable: let add4 = add 4.
This is because we are technically doing something like let add4 = fun y -> 4 + y. If we wanted to partially apply
the second parameter we would need to do something let flip f x y = f y x in flip sub.

To be more clear:

1 let sub x y = x - y
2 (* same as let sub = fun x -> fun y -> x - y *)
3 let minus3 = sub 3
4 (* let minus3 = fun y -> 3 - y *)
5 (* we cannot partially apply the second argument to sub unless we have a new function *)
6 (* we could make a sub specific function *)
7 let minus y = sub y 3
8 (* but let’s make something generic *)
9 let flip f x y = f y x

10 (* let flip = fun f -> fun x -> fun y -> f y x *)
11 let sub3 = flip sub 3
12 (* let sub3 = fun y -> sub y 3 *)

So how does and currying supported language know what the values of variables are? Or how are partially applicated
functions implemented? The answer lies with this idea of a closure, something thing that a Ruby Proc is.

1.7 Closures

If you look up the Proc object in the Ruby Docs, you will see that they call a Proc a closure. A closure is a way to create/bind
something called a context or environment. Consider the following:

l e t and4 w x y z = w && x && y && z
( * and4 = fun w −> fun x −> fun y −> fun z −> w && x && y && z * )
l e t and3 = add4 true
( * and3 = fun x −> fun y −> fun z −> true && x && y && z * )
l e t and2 = and3 true
( * and2 = fun y −> fun z −> true && true && y && z * )

How does the language or machine know that you want to bind say variable w to true? To be honest, there is no magic,
we just store the function, and then a list of key-value pairs of variables to values. This list of key-value pairs is called an
environment. A closure is typically just a tuple of the function and the environment. Visually, a closure might look like the
following:

l e t sub x y = x − y
l e t sub3 = sub 3
( * sub3 may look l i k e
( funct ion : fun y −> x − y , environment : [ x : 3 ] )
* )

Very much like a Proc (because a Proc is a closure), a closure is not evaluated, or run until it is called. Thus, once made,
the closure will not be modified. Thus the following would have no affect:

1 let sub x y = x - y
2 let x = 3
3 let sub3 = sub x
4 let x = 5
5 sub3 5 (* evaluates to -2 since 3 - 5 = -1 *)

Because the environment is not modified, and is evaluated with values that existed at the time of the closure’s creation,
we say that closures use static scope. This term is used in contrast with dynamic scope, where environment variables get
updated to match typically top level variables. That is the above example would return 0 instead of -2.
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1.8 Common HOFs

Part of the reason why higher order functions (HOFs) are so useful is because it allows us to be modular with out program
design, and separate functions from other processes. To see this, consider the following that we say earlier:

1 let sub x y = x - y
2 let div x y = x / y
3 let mystery x y = (x*2)+(y*3)
4 let sub3 y = sub y 3
5 let div3 y = div y 3
6 let double y = mystery y 0

The functions sub, div, and mystery are all non-commutative (the order of inputs matter), so if we want to partially
apply the second value, we need to write a new function that takes in a value to do so. Alternatively, we can just make a
generic function that partially applies the second value so we don’t need to ask for any input.

l e t f l i p f x y = f y x
l e t sub3 = f l i p sub 3
l e t div3 = f l i p div 3
l e t double = f l i p mystery 0

Being able to make similarly structured functions into a generic helps makes things modular, which is important to building
good programs and designing good software. So the next sections are about common HOFs which will attempt to make a
common function structure generic.

1.8.1 Map

Let us consider the following functions:

1 let rec double_items lst = match lst with
2 [] -> []
3 |h::t -> (h*2)::(double_items t)
4
5 let rec is_even lst = match lst with
6 []->[]
7 |h::t -> (if h mod 2 = 0 then true else false)::(is_even t)
8
9 let rec neg lst = match lst with

10 [] -> []
11 |h::t -> (-h)::(neg t)

All of these functions aim to iterate through a list and modify each item. This is very common need and so instead of creating
the above functions to do so, we may want to use this function called Map. Map will map the items from the input list (the
domain) to a list of new item (co-domain). To take the above function and make it more generic, let us see that is the same
across all of them:

1 let rec name lst = match lst with
2 [] -> []
3 |h::t -> (modify h)::(recursive_call t)

If we think about how we modify h, we will realize that we are just applying a function to h. Since it’s the function that
changes, we probably need to add it as a parameter. So adding this we should get

1 let rec map f lst = match lst with
2 [] -> []
3 |h::t -> (f h)::(map f t)

Fun fact: map actually exists in Ruby ([1,2,3].map!{|x| x+1}). Either way, in OCaml and other languages without
imperative looping structures, this is a common recursive function that is needed and can be used to modify each item of a
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list by building a new list of the modified values (recall that everything in OCaml is immutable). Consider the code trace for
adding 1 to each item in a int list.

1 let add1 x = x + 1 in map add1 [1;2;3]
2 (*
3 map add1 [1;2;3] = (add1 1)::(map add1 [2;3])
4 map add1 []2;3] = (add1 2)::(map add1 [3])
5 map add1 [3] = (add1 3)::(map add1 [])
6 map add1 [] = []
7 map add1 [1;2;3] = (add1 1)::(add1 2)::(add1 3)::[]
8 map add1 [1;2;3] = 2::3::4::[]
9 map add1 [1;2;3] = [2;3;4]

10 *)

1.8.2 Fold

While modifying each item in a list is useful, it is not the only common and useful list operation. Consider the following:

1 let rec concat lst = match lst with
2 []-> ""
3 |h::t -> h^(concat t)
4
5 let rec sum lst = match lst with
6 []-> 0
7 |h::t -> h+(sum t)
8
9 let rec product lst = match lst with

10 []-> 1
11 |h::t -> h*(product t)
12
13 let rec ands lst = match lst with
14 []-> true
15 |h::t -> h && (ands t)
16
17 let rec length lst = match lst with
18 []-> 0
19 |_::t -> 1+(length t)

Here we want to take all the items in a list and return a single aggregate value. Doing this process is called folding and there
are two common implementations. To start off, we will define define fold_right.

fold_right

So let us find out what each function has in common and then we can figure out what we need to add.

1 let rec name lst = match lst with
2 [] -> base_case
3 |h::t -> h operation (recursive_call t)

Taking a look at what we need, we need a base case, and we need an operation.

1 let rec fold_r f lst base = match lst with
2 [] -> base
3 |h::t -> f h (fold_r f t b)

Let us first talk about why it’s f h (fold_r f t b). In looking what was the same, we saw that it was h operator
(rec_call t). An operator is just a function so we are calling a function with 2 parameters: h and the recursive call
fold_r f t b.
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Some of you may also be wondering what about lenth? It doesn’t use h, it uses a constant 1. My answer to this is to
consider the type of the f. f is a function which takes in 2 parameters, h and the recursive call. I can easily just not use h
in the body of f. Consider the following code trace:

1 let myfunc h rc = 1 + rc in
2 fold_r myfunc [1;2;3] 0
3 (*
4 fold_r myfunc [1;2;3] 0 = myfunc 1 (fold_r myfunc [2;3] 0)
5 fold_r myfunc [2;3] 0 = myfunc 2 (fold_r myfunc [3] 0)
6 fold_r myfunc [3] 0 = myfunc 3 (fold_r myfunc [] 0)
7 fold_r myfunc [] 0 = 0
8 fold_r myfunc [3] 0 = myfunc 3 0 = 1 + 0 = 1
9 fold_r myfunc [2;3] 0 = myfunc 2 1 = 1 + 1 = 2

10 fold_r myfunc [1;2;3] 0 = myfunc 1 3 = 1 + 2 = 3
11 *)

Notice here that lines 8-10 are just the stack frames all returning and propagating the return value up as stack frames are
being popped off the stack. This also happens in map but there’s something interesting with fold so I wanted to bring
attention to it. That is, notice that if we send in a huge list we can potentially get a stackoverflow error or whatever OCaml’s
equivalent is. We can actually avoid this stack overflow and minimize the number of stack frames needed through the use
of the other way to implement fold: fold_left. This is the default implementation of fold in most languages afaik so we
typically just call this fold.

fold_left

See the next section (section 1.9) about why this we can minimize the number of stack frame, but since you already know
how fold works, here is fold_left

1 let rec fold f a l = match l with
2 [] -> a
3 |h::t -> fold f (f a h) t

I used the variable a instead of base case or whatever because in this variation, the value is going to act as an accumulator.
That is, this value is going to be constantly updated with each recursive call. Again see the next section for more about the
accumulator. One thing to note is that this will evaluate the items in the list in the reverse order as fold_right. Consider
the code trace for fold_left, then see them compared together.

( * take the sum of the l i s t * )
l e t add x y = x + y in
fo ld add 0 [ 1 ; 2 ; 3 ; ]
( *
fo ld add 0 [ 1 ; 2 ; 3 ] = fo ld add ( add 0 1 ) [ 2 ; 3 ] = fo ld add 1 [ 2 ; 3 ]
fo ld add 1 [ 2 ; 3 ] = fo ld add ( add 1 2 ) [ 3 ] = fo ld add 3 [ 3 ]
fo ld add 3 [ 3 ] = fo ld add ( add 3 3 ) [ ] = fo ld add 6 [ ]
fo ld add 6 [ ] = 6
* )

Now to compare the order of fold_right and fold_left we will use a non-commutative function: subtraction.

fo ld ( − ) 0 [ 1 ; 2 ; 3 ; ]
( *
fo ld ( − ) 0 [ 1 ; 2 ; 3 ] = fo ld ( − ) ( ( − ) 0 1 ) [ 2 ; 3 ] = fo ld ( − ) −1 [ 2 ; 3 ]
fo ld ( − ) −1 [ 2 ; 3 ] = fo ld ( − ) ( ( − ) −1 2 ) [ 3 ] = fo ld ( − ) −3 [ 3 ]
fo ld ( − ) −3 [ 3 ] = fo ld add ( ( − ) −3 3 ) [ ] = fo ld add −6 [ ]
fo ld ( − ) −6 [ ] = −6
* )
( * compare th i s to fo ld_ r igh t * )
fo ld_r ( − ) [ 1 ; 2 ; 3 ] 0
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( *
fo ld_ r ( − ) [ 1 ; 2 ; 3 ] 0 = ( − ) 1 ( fo ld_ r ( − ) [ 2 ; 3 ] 0)
fo ld_ r ( − ) [ 2 ; 3 ] 0 = ( − ) 2 ( fo ld_ r ( − ) [ 3 ] 0)
fo ld_ r ( − ) [ 3 ] 0 = ( − ) 3 ( fo ld_ r ( − ) [ ] 0)
fo ld_ r ( − ) [ ] 0 = 0
fo ld_r ( − ) [ 3 ] 0 = ( − ) 3 0 = 3
fo ld_r ( − ) [ 2 ; 3 ] 0 = ( − ) 2 3 = −1
fo ld_r ( − ) [ 1 ; 2 ; 3 ] 0 = ( − ) 1 −1 = 2
* )
( * −6 ! = 2 * )

How interesting.

1.9 Tail Call Optimization

I was going to make this it’s own chapter, but then had logistical questions so for now I decided against it and so I will just
put this in the HOF chpater for some reason.

Let us take a trip back to our 216 days when we learned about stack frames and function calls. One thing I have noticed
is that students get weird around recursion but I want you to consider the following

1 int fact1(int x){
2 if (x == 1)
3 return 1;
4 return -1
5 }
6 int fact2(int x){
7 if (x == 2)
8 return 2 * fact1(x-1);
9 return -1

10 }
11 int fact3(int x){
12 if (x == 3)
13 return 3 * fact2(x-1);
14 return -1
15 }
16 int fact4(int x){
17 if (x == 4)
18 return 4 * fact3(x-1);
19 return -1
20 }

Suppose we are on line 18. To evaluate what is returned, we have to call fact3, wait for it’s return value, and then use that
return value by multiplying it by 4. This is no different than it’s recursive equivalent

1 int fact4(int x){}
2 if (x == 1)
3 return 1;
4 if (x <= 4)
5 return x * fact4(x-1);
6 return -1;
7 }

The only difference is instead of calling a different function, waiting for it’s return value, then using it’s return value, we are
instead calling ourself, waiting for a return value, then using that return value.

Great, so now that we know how recursion works, recall how a stack frame is created and pushed onto the memory
stack when a function is called and then popped off the memory stack then the function returns. So the difference between
something like the non-recursive fact4 and the recursive fact4, is which function is being pushed to the stack.
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So Consider what the stack looks like for the recursive fact4 if we call fact4(3)

1 //Bottom of Stack//
2 3 // push argument on stack
3 ---start of fact4(3) stack frame---
4 return 3 * fact4(2)
5 ---end of fact4(3) stack frame---
6 2 // push argument on stack
7 ---start of fact4(2) stack frame---
8 return 2 * fact4(1)
9 ---end of fact4(2) stack frame---

10 2 // push argument on stack
11 ---start of fact4(1) stack frame---
12 return 1
13 ---end of fact4(1) stack frame---

Here we are pushing on stack frames when we call the recursive call. Then when finally get to out base case, we can then
start popping values off. So popping off the textttfact4(1) call would make the stack look like

1 //Bottom of Stack//
2 3 // push argument on stack
3 ---start of fact4(3) stack frame---
4 return 3 * fact4(2)
5 ---end of fact4(3) stack frame---
6 2 // push argument on stack
7 ---start of fact4(2) stack frame---
8 return 2 * 1
9 ---end of fact4(2) stack frame---

When you learned recursion, you probably learned about return values being propagated when teh function returns and
this is how you can communicate values from one stack frame to another. This is definitely what happens, but notice that
with something like recursive Fibonacci, you will get stack frames being added exponentially and you will get something like
a stackoverflow error.

1 int fib(int x){
2 if(x <= 1)
3 return 1;
4 return fib(x-1) + fib(x-2);
5 }

Here the number of stack frames increase at a rate of 2x since each call to fib will push 2 more fib stack frames.
I think we can all agree that Stackoverflow errors are not good and if we can avoid them, we should. One way to

avoid this is to use tail call optimization which would be something a compiler would use to optimize your code. To talk
about tail call optimization, let us first talk about what the actual issue is.

The issue is that there are too many stack frames on the stack and then we run out of memory. There is 2 ways we
can solve this issue: 1) add more memory or 2) pop things off the stack. The first solution doesn’t really fix the issue, since
memory is finite and we can just ask for something like fib(10000000). The second solution has an issue because we
need the old stack frames to exist. However, let us consider why we need the old stack frames.

In the previous example, we needed the old stack frame because before we could return, we needed the return value of
a different stack frame.

1 //Bottom of Stack//
2 // calling fact4(3)
3 ---------------------------------
4 return 3 * fact4(2)
5 //cannot return here since we need to first calculate fact4(2)
6 ---------------------------------
7 return 2 * fact4(1)
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8 //cannot return here since we need to first calculate fact4(1)
9 ---------------------------------

10 return 1
11 ---------------------------------

We said earlier that one way to pass in data from one stack frame to another is via the return value. However this is just
communication from the callee to the caller. We can pass information from the caller to the callee by via argument values.
So let consider this new factorial function:

1 int fact(int n, int a){
2 if(n<=1)
3 return a;
4 return fact(n-1, n*a);
5 }

Notice that I added a new argument, a. This new parameter will allow the caller to send in data to the callee during the
recursive call. Consider the following trace:

1 //Bottom of Stack//
2 // calling fact(3,1)
3 ---------------------------------
4 // fact(3,1)
5 return fact(3-1,3*1) // fact(2,3)
6 ---------------------------------
7 // fact(2,3)
8 return fact(2-1,2*3) // fact(1,6)
9 ---------------------------------

10 // fact(1,6)
11 return 6
12 ---------------------------------

Notice here that we get the same value, passing in the work of each stack frame into the next recursive call. What this means
is that we no longer need to wait for the recursive call to finish, we can instead pop off stack frames once the recursive call
happens.

1 //Bottom of Stack//
2 // calling fact(3,1)
3 ---------------------------------
4 // fact(3,1)
5 return fact(3-1,3*1) // fact(2,3)
6
7 // we don’t need the fact(3,1) stack frame so pop it off and push on fact(2,3) in it’s place
8
9 //Bottom of Stack//

10 // calling fact(2,3)
11 ---------------------------------
12 // fact(2,3)
13 return fact(2-1,2*3) // fact(1,6)
14
15 // we don’t need the fact(2,3) stack frame so pop it off and push on fact(1,6) in it’s place
16
17 //Bottom of Stack//
18 // calling fact(1,6)
19 ---------------------------------
20 // fact(1,6)
21 return 6
22
23 // got the correct return value
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So why is this called a tail call optimization and how to we make sure we are tail recursive? To answer this question let
us look at the syntax of these recursive calls.

1 int nontailfact(int x)
2 if (x == 1)
3 return 1;
4 return x * nontailfact(x-1);
5 }
6
7 int tailfact(int n, int a){
8 if(n<=1)
9 return a;

10 return tailfact(n-1, n*a);
11 }

Where the one major difference is the number of arguments, tail optimization does not care about this. Remember that
we care about the behavior of the recursive call. So if we notice the syntax around the recursive call, we can say that we care
about what the last thing being calculated is during the recursive call. In the nontailfact the last thing being calculated
is x * nontailfact(x-1). In the tailfact, the last thing being calculated is tailfact(n-1,n*a). This is purely a
syntactical (visual) thing so we say that any statement that could be the last thing executed is in tail position. If the
recursive call is in tail position, then we can take advantage of tail-call optimization.

Let us consider the tail position of some OCaml statements.

1 3
2 4
3 "a"
4 (* all of these statements are in tail position, since they are the last thing being

evaluated *)
5
6 2 + 3
7 4 * 5
8 (* here 2,3,4,5 are not in tail position. The last thing calculated is 2*3, so we say the

entire expression is in tail position. This is a tad confusing so let’s see something
clearer *).

9
10 [2+3;5*4;0-1]
11 (* here the last thing being evaluated is the creation of the list. So despite 2*3 being the

last expression being evaluated, we still need to create the list so the entire
expression is again in tail position *)

12
13 let x= 3 * 4 in x + 4
14 (* the last thing here is x+4 so the expression x + 4 is in tail position *)
15
16 let x = 3 + 4 in let x = 6 in 7
17 (* consider the syntax we used for a let binding: let v = e1:t1 in e2:t.
18 Here x = v, e1 = 3 + 4, and (let x = 6 in 7) is e2. Here at the top level, (or in broadest

context), the expression in tail position is e2 or (let x = 6 in 7). If we changed our
context to be more "zoomed in" or "jump in instead of jump over" then things in tail
position would be just 7 *)

Again this is purely a syntactical thing which depends on the context of which parts of the expression will we consider.
In an earlier section, we talked about fold_right and fold_left. They both do the same thing(ish), but one of them is
tail recursive, and the other is not.
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