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Announcements

® Extra credit assighment 6 is due on December 7

® Final exam will be posted on gradescope at December 14 12:01 am and will be due
on December |4 | 1:59 pm local time

e No late submissions allowed

® Course evaluation: https://www.courseevalum.umd.edu

QERSIT
&
Q

=% DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC818X)


https://www.courseevalum.umd.edu

Contact me:

o CMSC416:If you are interested in HPC research
o CMSC8I8X:If you are interested in collaborating

® |f you are an undergrad interested in participating in International Student Cluster
Competitions
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Deep neural networks

® Neural networks can be used to model complex functions

® Several layers that process “batches” of the input data
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Other definitions

® |earning/training: task of selecting weights that lead to an accurate function
® | oss:a scalar proxy that when minimized leads to higher accuracy

¢ Gradient descent: process of updating the weights using gradients (derivates) of the
loss weighted by a learning rate

® Mini-batch: Small subsets of the dataset processed iteratively

® Epoch: One pass over all the mini-batches

S DEPARTMENT OF ,
Zgwg COMPUTER SCIENCE Abhinav Bhatele (CMSC416 / CMSC818X)



Parallel/distributed training

® Many opportunities for exploiting parallelism
® |terative process of training (epochs)
® Many iterations per epoch (mini-batches)

® Many layers in DNNs
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Parallel/distributed training

Increase in size of neural networks

® Many opportunities for exploiting parallelism

® |terative process of training (epochs) :

® Many iterations per epoch (mini-batches) 5 08 E;\"I ...... —e T Bertlarge..............
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Parallel/distributed training

Increase in size of neural networks
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1 2012 2014 2016 2018 2019 2020
® Many layers in DNNs
Year
, Largest Largest Trained Network
Framewors Type of Parallelism Accelerator Count (No. of Parameters)
FlexFlow Hybrid 64 GPUs 24M*
PipeDream Inter-Layer 16 GPUs 138M
DDP Data 256 GPUs 345M
GPipe Inter-Layer 8 GPUs 557M
MeshTensorFlow Intra-Layer 512-core TPUv2 4.9B
Megatron Intra-Layer 512 GPUs 8.3B
TorchGPipe Inter-Layer 8 GPUs 15.8B
KARMA Data 2048 GPUs 17B
LBANN Data 3072 CPUs 78.6B
ZeRO Data 400 GPUs 100B
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Data parallelism

® Divide training data among workers (GPUs)

® Each worker has a full copy of the entire NN and
processes different mini-batches

e All reduce operation to synchronize gradients
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Data parallelism

® Divide training data among workers (GPUs)

® Each worker has a full copy of the entire NN and
processes different mini-batches

e All reduce operation to synchronize gradients
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Layer | Forward Pass
Layer 2 Forward Pass
Layer 3 Forward Pass

Layer 4 Forward Pass

Layer | Backward Pass
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Intra-layer parallelism

® Enables training neural networks that would not fit on a single GPU

® Distribute the work within a layer between multiple processes/GPUs
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Inter-layer parallelism

e Distribute entire layers to different processes/
GPUs

® Map contiguous subsets of layers

® Point-to-point communication (activations and

gradients) between processes/GPUs managing
different layers

® Use a pipeline of mini-batches to enable
concurrent execution
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Inter-layer parallelism

e Distribute entire layers to different processes/

GPUs

® Map contiguous subsets of layers
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Inter-layer parallelism

e Distribute entire layers to different processes/

GPUs

® Map contiguous subsets of layers

® Point-to-point communication (activations and
gradients) between processes/GPUs managing

different layers

® Use a pipeline of mini-batches to enable

concurrent execution
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Inter-layer Parallelism with Pipelining
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Hybrid parallelism

e Using two or more approaches together in the same parallel framework
® 3D parallelism: use all three
® Popular serial frameworks: pytorch, tensorflow

® Popular parallel frameworks: DDP, MeshTensorFlow, Megatron-LM, ZeRO
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Questions?
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Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu



