
Shared Memory and OpenMP
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC818X)

Abhinav Bhatele (CMSC416 / CMSC818X)

Announcements

• Assignment 1 has been posted, due on: October 11, 11:59 pm ET

• Additional office hours:

• 10:30 - 11:30 am on Wed and Fri

2

Abhinav Bhatele (CMSC416 / CMSC818X)

Shared memory programming

• All entities (threads) have access to the entire address space

• Threads “communicate” or exchange data by sharing variables

• User has to manage data conflicts

3

Abhinav Bhatele (CMSC416 / CMSC818X)

OpenMP

• OpenMP is an example of a shared memory programming model

• Provides on-node parallelization

• Meant for certain kinds of programs/computational kernels

• Ones that use arrays and loops

• Potentially easy to implement in parallel with small code changes

4

Abhinav Bhatele (CMSC416 / CMSC818X)

OpenMP

• OpenMP is a language extension that enables parallelizing C/C++/Fortran code

• Programmer uses compiler directives and library routines to indicate parallel regions
in the code

• Compiler converts code to multi-threaded code

• Fork/join model of parallelism

5

Abhinav Bhatele (CMSC416 / CMSC818X)

Fork-join parallelism

• Single flow of control

• Master thread spawns worker threads

6

 https://en.wikipedia.org/wiki/OpenMP

https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele (CMSC416 / CMSC818X)

Fork-join parallelism

• Single flow of control

• Master thread spawns worker threads

6

 https://en.wikipedia.org/wiki/OpenMP

https://en.wikipedia.org/wiki/OpenMP

Abhinav Bhatele (CMSC416 / CMSC818X)

Race conditions when threads interact

• Unintended sharing of variables can lead to race conditions

• Race condition: program outcome depends on the scheduling order of threads

• How can we prevent data races?

• Use synchronization

• Change how data is stored

7

Abhinav Bhatele (CMSC416 / CMSC818X)

OpenMP pragmas

• Pragma: a compiler directive in C or C++

• Mechanism to communicate with the compiler

• Compiler may ignore pragmas

8

#pragma omp construct [clause [clause] ...]

Abhinav Bhatele (CMSC416 / CMSC818X)

• Compiling:

• Setting number of threads:

Hello World in OpenMP

9

#include <stdio.h>
#include <omp.h>

int main(void)
{
 #pragma omp parallel
 printf("Hello, world.\n");
 return 0;
}

gcc -fopenmp hello.c -o hello

export OMP_NUM_THREADS=2

Abhinav Bhatele (CMSC416 / CMSC818X)

Parallel for

• Directs the compiler that the immediately following for loop should be executed in
parallel

10

#pragma omp parallel for [clause [clause] ...]
for (i = init; test_expression; increment_expression) {
 ...
 do work
 ...
}

Abhinav Bhatele (CMSC416 / CMSC818X)

Parallel for example

11

int main(int argc, char **argv)
{
 int a[100000];

 #pragma omp parallel for
 for (int i = 0; i < 100000; i++) {
 a[i] = 2 * i;
 }

 return 0;
}

Abhinav Bhatele (CMSC416 / CMSC818X)

Parallel for execution
• Master thread creates worker threads

• All threads divide iterations of the loop among themselves

12

Master thread

Worker thread 1

Time

Worker thread 2

Worker thread 3

parallel for synchronize

Abhinav Bhatele (CMSC416 / CMSC818X)

Number of threads

• Use environment variable

• Use omp_set_num_threads(int num_threads)

• Set the number of OpenMP threads to be used in parallel regions

• int omp_get_num_procs(void);

• Returns the number of available processors

• Can be used to decide the number of threads to create

13

export OMP_NUM_THREADS=X

Abhinav Bhatele (CMSC416 / CMSC818X)

Data sharing defaults

• Most variables are shared by default

• Global variables are shared

• Exception: loop index variables are private by default

• Stack variables in function calls from parallel regions are also private to each thread
(thread-private)

14

Abhinav Bhatele (CMSC416 / CMSC818X)

saxpy (single precision a*x+y) example

15

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

Abhinav Bhatele (CMSC416 / CMSC818X)

saxpy (single precision a*x+y) example

15

for (int i = 0; i < n; i++) {
 z[i] = a * x[i] + y[i];
}

#pragma omp parallel for

Abhinav Bhatele (CMSC416 / CMSC818X)

Overriding defaults using clauses

• Specify how data is shared between threads executing a parallel region

• private(list)

• shared(list)

• default(shared | none)

• reduction(operator: list)

• firstprivate(list)

• lastprivate(list)

16

https://www.openmp.org/spec-html/5.0/openmpsu106.html#x139-5540002.19.4

Abhinav Bhatele (CMSC416 / CMSC818X)

private clause

• Each thread has its own copy of the variables in the list

• Private variables are uninitialized when a thread starts

• The value of a private variable is unavailable to the master thread after the parallel
region has been executed

17

Abhinav Bhatele (CMSC416 / CMSC818X)

default clause

• Determines the data sharing attributes for variables for which this would be implicitly
determined otherwise

18

Abhinav Bhatele (CMSC416 / CMSC818X)

Anything wrong with this example?

19

val = 5;

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 ... = val + 1;
}

Abhinav Bhatele (CMSC416 / CMSC818X)

Anything wrong with this example?

19

val = 5;

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 ... = val + 1;
}

The value of val will not be available
to threads inside the loop

Abhinav Bhatele (CMSC416 / CMSC818X)

Anything wrong with this example?

20

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

Abhinav Bhatele (CMSC416 / CMSC818X)

Anything wrong with this example?

20

#pragma omp parallel for private(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

The value of val will not be available
to the master thread outside the

loop

Abhinav Bhatele (CMSC416 / CMSC818X)

firstprivate clause

• Initializes each thread’s private copy to the value of the master thread’s copy

21

val = 5;

#pragma omp parallel for firstprivate(val)
for (int i = 0; i < n; i++) {
 ... = val + 1;
}

Abhinav Bhatele (CMSC416 / CMSC818X)

lastprivate clause

• Writes the value belonging to the thread that executed the last iteration of the loop
to the master’s copy

• Last iteration determined by sequential order

22

Abhinav Bhatele (CMSC416 / CMSC818X)

lastprivate clause

• Writes the value belonging to the thread that executed the last iteration of the loop
to the master’s copy

• Last iteration determined by sequential order

22

#pragma omp parallel for lastprivate(val)
for (int i = 0; i < n; i++) {
 val = i + 1;
}

printf(“%d\n”, val);

Abhinav Bhatele (CMSC416 / CMSC818X)

reduction(operator: list) clause
• Reduce values across private copies of a variable

• Operators: +, -, *, &, |, ^, &&, ||, max, min

23

#pragma omp parallel for
for (int i = 0; i < n; i++) {
 val += i;
}

printf(“%d\n”, val);

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

Abhinav Bhatele (CMSC416 / CMSC818X)

reduction(operator: list) clause
• Reduce values across private copies of a variable

• Operators: +, -, *, &, |, ^, &&, ||, max, min

23

#pragma omp parallel for
for (int i = 0; i < n; i++) {
 val += i;
}

printf(“%d\n”, val);

reduction(+: val)

https://www.openmp.org/spec-html/5.0/openmpsu107.html#x140-5800002.19.5

Abhinav Bhatele (CMSC416 / CMSC818X)

Loop scheduling

• Assignment of loop iterations to different worker threads

• Default schedule tries to balance iterations among threads

• User-specified schedules are also available

24

Abhinav Bhatele (CMSC416 / CMSC818X)

User-specified loop scheduling

• Schedule clause

• type: static, dynamic, guided, runtime

• static: iterations divided as evenly as possible (#iterations/#threads)

• chunk < #iterations/#threads can be used to interleave threads

• dynamic: assign a chunk size block to each thread

• When a thread is finished, it retrieves the next block from an internal work queue

• Default chunk size = 1

25

schedule (type[, chunk])

Abhinav Bhatele (CMSC416 / CMSC818X)

Other schedules

• guided: similar to dynamic but start with a large chunk size and gradually decrease it
for handling load imbalance between iterations

• auto: scheduling delegated to the compiler

• runtime: use the OMP_SCHEDULE environment variable

26

https://software.intel.com/content/www/us/en/develop/articles/openmp-loop-scheduling.html

Abhinav Bhatele (CMSC416 / CMSC818X)

Calculate the value of

27

π = ∫
1

0

4
1 + x2

int main(int argc, char *argv[])
{
 ...

 n = 10000;

 h = 1.0 / (double) n;
 sum = 0.0;

 for (i = 1; i <= n; i += 1) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

Abhinav Bhatele (CMSC416 / CMSC818X)

Calculate the value of

28

π = ∫
1

0

4
1 + x2

int main(int argc, char *argv[])
{
 ...

 n = 10000;
 h = 1.0 / (double) n;
 sum = 0.0;

 #pragma omp parallel for firstprivate(h) private(x) reduction(+: sum)
 for (i = 1; i <= n; i += 1) {
 x = h * ((double)i - 0.5);
 sum += (4.0 / (1.0 + x * x));
 }
 pi = h * sum;

 ...
}

Abhinav Bhatele (CMSC416 / CMSC818X)

Parallel region

• All threads execute the structured block

• Number of threads can be specified just like the parallel for directive

29

#pragma omp parallel [clause [clause] ...]
 structured block

Abhinav Bhatele (CMSC416 / CMSC818X)

Synchronization

• Concurrent access to shared data may result in inconsistencies

• Use mutual exclusion to avoid that

• critical directive

• atomic directive

• Library lock routines

30

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/replacing-annotations-with-openmp-code/adding-openmp-code-to-
synchronize-the-shared-resources.html

Abhinav Bhatele (CMSC416 / CMSC818X)

critical directive

• Specifies that the code is only to be executed by one thread at a time

31

#pragma omp critical [(name)]
 structured block

Abhinav Bhatele (CMSC416 / CMSC818X)

atomic directive

• Specifies that a memory location should be updated atomically

32

#pragma omp atomic
 expression

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

