
Memory Maps / Diagrams

Java Program Memory

The memory associated with a Java Program is divided in four parts:

• Stack - When a method is called, the stack provides the memory space needed to complete a method call. When a method is

called spaced in the stack is allocated. This space will store parameters, local variables, a reference to the current object (if

the method is non-static) and additional information. In our diagrams we will draw parameters, local variables and the

current object reference. In addition to providing space for variables, the stack allows us to use the same variable name in

different methods, and to force a method to finish before the method that called it. The term frame refers to the area of

memory that supports a method call. Remember a stack operates in a LIFO fashion (Last in – First out), so the last stack

frame (the currently executing method) needs to be removed, before the stack frame of the calling method.

• Heap - All objects in Java are created in the heap (no object can reside in the stack). Examples of objects we have seen in

class are strings and arrays.

• Static Area - We use the name “static area” to refer to the memory that stores values that are present throughout the duration

of the program execution. When you declare a static variable, this variable lives in this area.

• Code - This is where the code to be executed resides. We usually don’t draw this area in our diagrams, but we want you to

be aware of it.

The following is the structure of a memory map where the stack, heap and static area are present.

Stack Heap

Static Area

Frame #2

Frame #1

Sample Memory Maps

Please use the format described by the examples below when asked to draw memory maps / diagrams. Each example below covers

typical diagrams we will ask you to draw. Regarding the diagrams:

1. When asking to draw a map, we need to set a stop point, so you can draw the contents of the stack, heap, and static area up to

that point in the execution (otherwise the stack would be empty as the program would have finished execution). We will

represent that stop point with the comment /* HERE */.

2. When drawing an object, we draw the instance variables associated with the object. For arrays, we draw the length property

and a row of entries representing the array entries.

3. For non-static methods, the “this” current object reference will be drawn as the first entry in the stack (it can be seen as an

implicit parameter).

4. Although the name “static method” may imply that static methods live in the static area, that is not the case. The code for both

static and non-static methods resides in the code area. Both static and non-static methods use the stack for execution. The only

difference between static and non-static methods, is that a static method does not require an object in order to be executed.

5. Any entry in the stack that has not been assigned a value will be left blank.

6. You should draw variables in the stack as you encounter them during code execution. This will allow you to verify your work

easily.

7. You will see that args is always the first entry in the main method’s frame. The args parameter represents command line

arguments. We will not provide any command line arguments in our examples, so we will always draw args as a reference to

an array of length 0. You will get points for drawing this args entry.

8. For simplicity, loop variables defined inside of a loop (e.g., for (int i = 0 …)) will not be drawn unless the /* HERE */ marker

is within the scope of the variable.

9. On campus, you must drink pepsi instead of coke. It has nothing to do with memory maps, but we wanted to let you know .

10. We will use the following symbol to represent a stack frame.

Object Object Object

Example #1 (Static Methods)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/.

public class Driver {

 public static int sumOfSquares(int x, int y) {

 int answer;

 answer = x * x + y * y;

 /* HERE */

 return answer;

 }

 public static void main(String[] args) {

 int a = 3, b = 4, result;

 result = sumOfSquares(a, b);

 System.out.println("Answer: " + result);

 }

}

 Stack Heap

Static Area

answer 25

y 4

x 3

result

b 4

a 3

args

length 0

sumOfSquares

main

Example #2 (Methods/Objects)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/.

public class Person {

 public static double MINIMUM_SALARY = 1000.00;

 private String name;

 private double salary;

 private StringBuffer calls;

 public Person(String name, double salary) {

 this.name = name;

 this.salary = salary;

 calls = new StringBuffer("Calls: ");

 }

 public Person(String name) {

 this(name, MINIMUM_SALARY);

 }

 public Person increaseSalary(double delta) {

 salary += delta;

 /* Returning reference to current object */

 return this;

 }

 public void addCall(String newCall) {

 calls.append(newCall);

 }

 public String toString() {

 return name + ", $" + salary + ", " + calls;

 }

}

public class Driver {

 public static void task(Person friend, double salary) {

 double newSal = salary + 100;

 Person p = friend;

 p.increaseSalary(newSal);

 friend.addCall("toschool");

 friend = null;

 /* HERE */

 }

 public static void main(String[] args) {

 double pay = 4000;

 Person laura = new Person("Laura", 2000);

 task(laura, pay);

 System.out.println(laura);

 }

}

 Stack Heap

name
salary 6100

calls

Static Area

MINIMUM_SALARY

1000.00

p

newSal 4100

salary 4000

friend null

laura

pay 4000

args

length 0

main

task

Calls: toschool

Laura

Example #3 (Methods/Objects/this Reference)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/. It is the

same code as the previous example, but /* HERE */ is in a different position.

public class Person {

 public static double MINIMUM_SALARY = 1000.00;

 private String name;

 private double salary;

 private StringBuffer calls;

 public Person(String name, double salary) {

 this.name = name;

 this.salary = salary;

 calls = new StringBuffer("Calls: ");

 }

 public Person(String name) {

 this(name, MINIMUM_SALARY);

 }

 public Person increaseSalary(double delta) {

 salary += delta;

 /* HERE */

 /* Returning reference to current object */

 return this;

 }

 public void addCall(String newCall) {

 calls.append(newCall);

 }

 public String toString() {

 return name + ", $" + salary + ", " + calls;

 }

}

public class Driver {

 public static void task(Person friend, double salary) {

 double newSal = salary + 100;

 Person p = friend;

 p.increaseSalary(newSal);

 friend.addCall("toschool");

 friend = null;

 }

 public static void main(String[] args) {

 double pay = 4000;

 Person laura = new Person("Laura", 2000);

 task(laura, pay);

 System.out.println(laura);

 }

}

 Stack Heap

name
salary 6100

calls

Static Area

MINIMUM_SALARY

1000.00

delta 4100

this

p

newSal 4100

salary 4000

friend

laura

pay 4000

args

length 0

main

task

Calls:

Laura

increaseSalary

Example #4 (One Dimensional Array of Primitives)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/.

public class Driver {

 public static void increaseBy(int[] data, int delta) {

 for (int i = 0; i < data.length; i++) {

 data[i] += delta;

 }

 /* HERE */

 }

 public static void main(String[] args) {

 int[] src = { 10, 30, 40 };

 increaseBy(src, 5);

 for (int i = 0; i < src.length; i++) {

 System.out.println(src[i]);

 }

 }

}

 Stack Heap

15 35 45

length 3

Static

Area

delta 5

data

src

args

length 0

main

increaseBy

Example #5 (One Dimensional Array of References)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/.

public class Cat {

 private String name;

 private int lives;

 public Cat(String name) {

 this.name = name;

 this.lives = 7;

 }

 public void decreaseLives() {

 lives--;

 }

 public String toString() {

 return "Cat [name=" + name + ", lives=" + lives + "]";

 }

}

public class Driver {

 public static void decreaseLives(Cat[] all) {

 for (int i = 0; i < all.length; i++) {

 all[i].decreaseLives();

 }

 /* HERE */

 }

 public static void main(String[] args) {

 Cat[] allCats = new Cat[2];

 allCats[0] = new Cat("Garfield");

 allCats[1] = new Cat("Fluffy");

 decreaseLives(allCats);

 for (int i = 0; i < allCats.length; i++) {

 System.out.println(allCats[i]);

 }

 }

}

 Stack Heap

length 2

name

lives 6

 name

lives 6

Static

Area

 all

allCats

args

main

decreaseLives

length 0

Garfield

Fluffy

Example #6 (Two Dimensional Arrays)

Draw a memory map for the following program at the point in the program execution indicated by the comment /*HERE*/.

 }

}

public class Driver {

 public static void decrease(int[][] allScores, int delta, Cat[][] allCats) {

 for (int row = 0; row < allScores.length; row++) {

 for (int col = 0; col < allScores[row].length; col++) {

 allScores[row][col] -= delta;

 }

 }

 allCats[1][2].decreaseLives();

 /* HERE */

 }

 public static void main(String[] args) {

 int[][] scores = { { 90, 85 }, { 10, 30, 40 } };

 Cat[][] cats = new Cat[2][];

 cats[0] = new Cat[2];

 cats[1] = new Cat[3];

 cats[0][1] = new Cat("Garfield");

 cats[1][2] = new Cat("Fluffy");

 decrease(scores, 5, cats);

 String answer = "Scores:\n";

 for (int i = 0; i < scores.length; i++) {

 answer += Arrays.toString(scores[i]) + "\n";

 }

 answer += "\nCats:\n";

 for (int row = 0; row < cats.length; row++) {

 for (int col = 0; col < cats[row].length; col++) {

 if (cats[row][col] != null) {

 answer += cats[row][col] + "\n";

 }

 }

 }

 System.out.println(answer);

 }

}

public class Cat {

 private String name;

 private int lives;

 public Cat(String name) {

 this.name = name;

 this.lives = 7;

 }

 public void decreaseLives() {

 lives--;

 }

 public String toString() {

 return "Cat [name=" + name + ", lives=" + lives + "]";

 Stack Heap

length 3

length 2

null null

length 2

name

lives 6

null name

lives 7

length 2

length 3

5 25 35

length 2

85 80

Static

Area

allCats

delta 5

allScores

 cats

scores

args

main

decrease

length 0

Garfield

Fluffy

Example #7 (Recursion)

When drawing maps for recursive solutions, we need to specify up to which recursive call we should draw the map. Below, we

illustrate a map up to the point in execution when the argument of the recursive call reaches the value 1. Notice how each frame is

labeled.

public class Factorial {

 public static int factorial(int n) {

 if (n == 0) {

 return 1;

 } else {

 return n * factorial(n - 1);

 }

 }

 public static void main(String[] args) {

 int answer = factorial(3);

 System.out.println(answer);

 }

}

 Stack Heap

Static

Area

 n 1

 n 2

 n 3

answer

args

main

factorial(3)

length 0

factorial(2)

factorial(1)

