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About the instructor

• Ph.D. from the University of Illinois

• Spent eight years at Lawrence Livermore National Laboratory
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• Started at the University of Maryland in 
2019
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Masks are mandatory inside the classroom
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President Pines provided clear expectations to the University about the wearing of masks for 
students, faculty, and staff. Face coverings over the nose and mouth are required while you are 
indoors at all times. There are no exceptions when it comes to classrooms, laboratories, and 
campus offices.

Students not wearing a mask will be given a warning and asked to wear one, or will be asked to 
leave the room immediately. Students who have additional issues with the mask expectation 
after a first warning will be referred to the Office of Student Conduct for failure to comply with 
a directive of University officials.
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Introductions

• Name

• Junior/Senior/MS/PhD

• Something interesting/ unique about yourself

• Why this course? (optional)
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This course is

• An introduction to parallel computing

• 416: Upper Level CS Coursework / General Track / Area 1: Systems 

• 818X:  Qualifying course for MS/PhD: Computer Systems

• Work expected:

• Four to five programming assignments

• Four quizzes

• Midterm exam: in class on October 26

• Final exam: on December 15
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Course topics

• Introduction to parallel computing (1 week)

• Distributed memory parallel programming (3 weeks)

• Shared memory parallel programming (2 weeks)

• Parallel algorithms (2 weeks)

• Performance analysis (1 week)

• Performance issues (2 weeks)

• Parallel simulation codes (2 weeks)
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Tools we will use for the class

• Syllabus, lecture slides, assignment descriptions on course website:

• http://www.cs.umd.edu/class/fall2021/cmsc416 

• Video recordings on Panopto

• Assignment submissions and quizzes on ELMS

• Discussions: Piazza

• piazza.com/umd/fall2021/cmsc416cmsc818x 

• If you want to send an email, cc both TAs and me
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http://www.cs.umd.edu/class/fall2021/cmsc416
http://piazza.com/umd/fall2021/cmsc416cmsc818x
http://www.cs.umd.edu/class/fall2021/cmsc416
http://piazza.com/umd/fall2021/cmsc416cmsc818x


Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Deepthought2 accounts

• Shoken and Pooja will email your login/password for deepthought2

• Helpful resources:

• http://www.cs.umd.edu/class/fall2021/cmsc416/deepthought2.shtml

• https://www.glue.umd.edu/hpcc/help/usage.html

• https://hpcbootcamp.readthedocs.io
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http://www.cs.umd.edu/class/fall2021/cmsc416/deepthought2.shtml
https://www.glue.umd.edu/hpcc/help/usage.html
https://hpcbootcamp.readthedocs.io
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https://www.glue.umd.edu/hpcc/help/usage.html
https://hpcbootcamp.readthedocs.io
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Excused absence
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Any student who needs to be excused for an absence from a single lecture, due to a medically 
necessitated absence shall make a reasonable attempt to inform the instructor of his/her illness prior to 
the class. Upon returning to the class, present the instructor with a self-signed note attesting to the date 
of their illness. Each note must contain an acknowledgment by the student that the information provided 
is true and correct. Providing false information to University officials is prohibited under Part 9(i) of the 
Code of Student Conduct (V-1.00(B) University of Maryland Code of Student Conduct) and may result in 
disciplinary action.

Self-documentation may not be used for Major Scheduled Grading Events (midterm and final exams) and 
it may only be used for two class meetings during the semester. Any student who needs to be excused for 
a prolonged absence (two or more consecutive class meetings), or for a Major Scheduled Grading Event, 
must provide written documentation of the illness from the Health Center or from an outside health 
care provider. This documentation must verify dates of treatment and indicate the timeframe that the 
student was unable to meet academic responsibilities. In addition, it must contain the name and phone 
number of the medical service provider to be used if verification is needed. No diagnostic information 
will ever be requested.
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What is parallel computing?

• Serial or sequential computing: doing a task in sequence on a single processor

• Parallel computing: breaking up a task into sub-tasks and doing them in parallel 
(concurrently) on a set of processors (often connected by a network)

• Some tasks do not need any communication: embarrassingly parallel
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What is parallel computing?

• Does it include:

• Grid computing

• Distributed computing

• Cloud computing

• Does it include:

• Superscalar processors

• Vector processors

• Accelerators (GPUs, FPGAs)
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The need for parallel computing or HPC

12

https://www.nature.com/articles/nature21414

Drug discovery

HPC stands for High Performance Computing
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The need for parallel computing or HPC
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https://www.nature.com/articles/nature21414

Drug discovery Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

HPC stands for High Performance Computing
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The need for parallel computing or HPC

12

https://www.nature.com/articles/nature21414

Drug discovery Weather forecasting

https://www.ncl.ucar.edu/Applications/wrf.shtml

Study of the universe

https://www.nas.nasa.gov/SC14/demos/demo27.html

HPC stands for High Performance Computing
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Why do we need parallelism?

• Make some science simulations feasible in the lifetime of humans

• Either due to speed or memory requirements

• Provide answers in realtime or near realtime
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Large supercomputers

• Top500 list: https://www.top500.org/lists/top500/2020/06/
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https://www.olcf.ornl.gov/summit/
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Parallel architecture

• A set of nodes or processing elements connected by a network. 
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https://computing.llnl.gov/tutorials/parallel_comp
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Interconnection networks

• Different topologies for connecting nodes together

• Used in the past: torus, hypercube

• More popular currently: fat-tree, dragonfly
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Column all-to-all (black) links Row all-to-all (green) links

A group with 96 Aries routers

Inter-group (blue) links 
(not all links are shown)

Two-level dragonfly with multiple groups

Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 ⇥ 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.
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work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
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contend at a switch if their destination IDs have the same
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jobs are likely to contend for network links and interfere with
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tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.
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tion applications used in the experiments for this paper.
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I/O sub-system / Parallel file system

• Home directories and scratch space typically on a parallel file system

• Mounted on all login and compute nodes

17

http://wiki.lustre.org/Introduction_to_Lustre
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System software: models and runtimes
• Parallel programming model

• Parallelism is achieved by making calls to a library and the execution model 
depends on the library used.

• Parallel runtime [system]:

• Implements the parallel execution model

• Shared memory/address-space

• Pthreads, OpenMP

• Distributed memory

• MPI, Charm

18

User code

Parallel runtime

Communication library

Operating system



Terminology and Definitions
Abhinav Bhatele, Department of Computer Science

Introduction to Parallel Computing (CMSC416 / CMSC818X)



Abhinav Bhatele (CMSC416 / CMSC818X) LIVE RECORDING

Cores, sockets, nodes
• Core: a single execution unit that has 

a private L1 cache and can execute 
instructions independently 

• Processor: several cores on a single 
Integrated Circuit (IC) or chip are 
called a multi-core processor

• Socket: physical connector into which 
an IC/chip or processor is inserted.

• Node: a packaging of sockets - 
motherboard or printed circuit board 
(PCB) that has multiple sockets

20

https://hpc-wiki.info/hpc/HPC-Dictionary
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Rackmount servers
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Rackmount servers
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Rackmount server motherboard
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https://www.anandtech.com/show/15924/chenbro-announces-rb13804-dual-socket-1u-xeon-4-bay-hpc-barebones-server https://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested
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Rackmount server motherboard
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Job scheduling

23
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Job scheduling

• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

23

Job Queue

#Nodes 
Requested

Time 
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
… …
… …

1
2
3
4
5
6
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Job scheduling

• HPC systems use job or batch scheduling

• Each user submits their parallel programs for execution to a “job” scheduler

• The scheduler decides:

• what job to schedule next (based on an algorithm: FCFS, priority-based, ….)

• what resources (compute nodes) to allocate to the ready job 

23
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Job scheduling
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Job Queue

#Nodes 
Requested

Time 
Requested

128 30 mins
64 24 hours
56 6 hours

192 12 hours
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1
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5
6

• Compute nodes: dedicated to each job

• Network, filesystem: shared by all jobs
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Compute nodes vs. login nodes

• Compute nodes: dedicated nodes for running jobs

• Can only be accessed when they have been allocated to a user by the job scheduler

• Login nodes: nodes shared by all users to compile their programs, submit jobs etc.
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Supercomputers vs. commodity clusters

• Supercomputer refers to a large expensive installation, typically using custom 
hardware

• High-speed interconnect

• IBM Blue Gene, Cray XT, Cray XC

• Cluster refers to a cluster of nodes, typically put together using commodity (off-the-
shelf) hardware

25
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Serial vs. parallel code

• Thread: a thread or path of execution managed by the OS

• Threads share the same memory address space

• Process: heavy-weight, processes do not share resources such as memory, file 
descriptors etc.

• Serial or sequential code: can only run on a single thread or process

• Parallel code: can be run on one or more threads or processes

26
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Scaling and scalable

• Scaling: running a parallel program on 1 
to n processes

• 1, 2, 3, … , n

• 1, 2, 4, 8, …, n

• Scalable: A program is scalable if it’s 
performance improves when using more 
resources

27
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Weak versus strong scaling

• Strong scaling: Fixed total problem size as we run on more processes

• Sorting n numbers on 1 process, 2 processes, 4 processes, …

• Weak scaling: Fixed problem size per process but increasing total problem size as we 
run on more processes

• Sorting n numbers on 1 process

• 2n numbers on 2 processes

• 4n numbers on 4 processes

28
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Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on p processes

• Efficiency: Speedup per process

29

Speedup =
t1
tp

Efficiency =
t1

tp × p
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Amdahl’s law

• Speedup is limited by the serial portion of the code

• Often referred to as the serial “bottleneck”

• Lets say only a fraction f of the code can be parallelized on p processes

30

Speedup =
1

(1 − f ) + f/p
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Amdahl’s law

31

Speedup =
1

(1 − f ) + f/p

    fprintf(stdout,"Process %d of %d is on %s\n",
        myid, numprocs, processor_name);
    fflush(stdout);

    n = 10000;          /* default # of rectangles */
    if (myid == 0)
    startwtime = MPI_Wtime();

    MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

    h   = 1.0 / (double) n;
    sum = 0.0;
    /* A slightly better approach starts from large i and works back */
    for (i = myid + 1; i <= n; i += numprocs)
    {
    x = h * ((double)i - 0.5);
    sum += f(x);
    }
    mypi = h * sum;

    MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

Speedup =
1

(1 − 0.6) + 0.6/p

Total time on 1 process = 100s
Serial portion = 40s
Portion that can be parallelized = 60s

f =
60
100

= 0.6
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Communication and synchronization

• Each process may execute serial code independently for a while

• When data is needed from other (remote) processes, messaging occurs

• Referred to as communication or synchronization or MPI messages

• Intra-node vs. inter-node communication

• Bulk synchronous programs: All processes compute simultaneously, then synchronize 
together

32
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Different models of parallel computation

• SIMD: Single Instruction Multiple Data

• MIMD: Multiple Instruction Multiple Data

• SPMD: Single Program Multiple Data

• Typical in HPC

33
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Getting started with deepthought2

• 444 Ivy Bridge nodes with 20 cores/node

• 40 Ivy Bridge nodes with 20 cores/node and 2 NVIDIA Tesla K20m GPUs

34
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