MoreStlcMore on the Simply Typed Lambda-Calculus

Simple Extensions to STLC

The simply typed lambda-calculus has enough structure to make its theoretical properties interesting, but it is not much of a programming language!
In this chapter, we begin to close the gap with real-world languages by introducing a number of familiar features that have straightforward treatments at the level of typing.

Numbers

Adding types, constants, and primitive operations for natural numbers is easy (as we saw in exercise stlc_arith).

Let Bindings

A more interesting extension... Let-bindings.
When writing a complex expression, it is often useful to give names to some of its subexpressions: this avoids repetition and often increases readability.
Syntax:
       t ::=                Terms
           | ...               (other terms same as before)
           | let x=t in t      let-binding

Reduction:
t1 --> t1' (ST_Let1)  

let x=t1 in t2 --> let x=t1' in t2
   (ST_LetValue)  

let x=v1 in t2 --> [x:=v1]t2
Typing:
Gamma ⊢ t1 ∈ T1      x>T1; Gamma ⊢ t2 ∈ T2 (T_Let)  

Gamma ⊢ let x=t1 in t2 ∈ T2

Pairs

In Coq, the primitive way of extracting the components of a pair is pattern matching. An alternative is to take fst and snd -- the first- and second-projection operators -- as primitives. Just for fun, let's do our pairs this way. For example, here's how we'd write a function that takes a pair of numbers and returns the pair of their sum and difference:
       \x : Nat*Nat,
          let sum = x.fst + x.snd in
          let diff = x.fst - x.snd in
          (sum,diff)

Syntax:
       t ::=                Terms
           | ...
           | (t,t)             pair
           | t.fst             first projection
           | t.snd             second projection

       v ::=                Values
           | ...
           | (v,v)             pair value

       T ::=                Types
           | ...
           | T * T             product type

Reduction...
t1 --> t1' (ST_Pair1)  

(t1,t2) --> (t1',t2)
t2 --> t2' (ST_Pair2)  

(v1,t2) --> (v1,t2')
t1 --> t1' (ST_Fst1)  

t1.fst --> t1'.fst
   (ST_FstPair)  

(v1,v2).fst --> v1
t1 --> t1' (ST_Snd1)  

t1.snd --> t1'.snd
   (ST_SndPair)  

(v1,v2).snd --> v2

Typing:
Gamma ⊢ t1 ∈ T1     Gamma ⊢ t2 ∈ T2 (T_Pair)  

Gamma ⊢ (t1,t2) ∈ T1*T2
Gamma ⊢ t0 ∈ T1*T2 (T_Fst)  

Gamma ⊢ t0.fst ∈ T1
Gamma ⊢ t0 ∈ T1*T2 (T_Snd)  

Gamma ⊢ t0.snd ∈ T2

Unit

Another handy base type, found especially in functional languages, is the singleton type Unit.
Syntax:
       t ::=                Terms
           | ...               (other terms same as before)
           | unit              unit

       v ::=                Values
           | ...
           | unit              unit value

       T ::=                Types
           | ...
           | Unit              unit type
Typing:
   (T_Unit)  

Gamma ⊢ unit ∈ Unit
Is unit the only term of type Unit?
(1) Yes
(2) No

Sums

Many programs need to deal with values that can take two distinct forms. For example, we might identify students in a university database using either their name or their id number. A search function might return either a matching value or an error code.
These are specific examples of a binary sum type (sometimes called a disjoint union), which describes a set of values drawn from one of two given types, e.g.:
       Nat + Bool

We create elements of these types by tagging elements of the component types, telling on which side of the sum we are putting them. E.g.,
   inl 42  ∈ Nat + Bool
   inr tru ∈ Nat + Bool
In general, the elements of a type T1 + T2 consist of the elements of T1 tagged with the token inl, plus the elements of T2 tagged with inr.

As we've seen in Coq programming, one important use of sums is signaling errors:
      div ∈ Nat -> Nat -> (Nat + Unit)
      div =
        \x:Nat, \y:Nat,
          if iszero y then
            inr unit
          else
            inl ...

Values of sum type are "destructed" by case analysis:
    getNat ∈ Nat+Bool -> Nat
    getNat =
      \x:Nat+Bool,
        case x of
          inl n => n
        | inr b => if b then 1 else 0

Syntax:
       t ::=                Terms
           | ...               (other terms same as before)
           | inl T t           tagging (left)
           | inr T t           tagging (right)
           | case t of         case
               inl x => t
             | inr x => t

       v ::=                Values
           | ...
           | inl T v           tagged value (left)
           | inr T v           tagged value (right)

       T ::=                Types
           | ...
           | T + T             sum type

Reduction:
t1 --> t1' (ST_Inl)  

inl T2 t1 --> inl T2 t1'
t2 --> t2' (ST_Inr)  

inr T1 t2 --> inr T1 t2'
t0 --> t0' (ST_Case)  

case t0 of inl x1 => t1 | inr x2 => t2 -->
case t0' of inl x1 => t1 | inr x2 => t2
   (ST_CaseInl)  

case (inl T2 v1) of inl x1 => t1 | inr x2 => t2
--> [x1:=v1]t1
   (ST_CaseInr)  

case (inr T1 v2) of inl x1 => t1 | inr x2 => t2
--> [x2:=v2]t2

Typing:
Gamma ⊢ t1 ∈ T1 (T_Inl)  

Gamma ⊢ inl T2 t1 ∈ T1 + T2
Gamma ⊢ t2 ∈ T2 (T_Inr)  

Gamma ⊢ inr T1 t2 ∈ T1 + T2
Gamma ⊢ t0 ∈ T1+T2
x1>T1; Gamma ⊢ t1 ∈ T3
x2>T2; Gamma ⊢ t2 ∈ T3 (T_Case)  

Gamma ⊢ case t0 of inl x1 => t1 | inr x2 => t2 ∈ T3
We use the type annotations on inl and inr to make the typing relation deterministic (each term has at most one type), as we did for functions.
What does the following term step to (in one step)?

    let f = \x : Nat + Bool,
              case x of inl nn + 3 | inr b ⇒ 0 in
    f (inl Bool 4)
(1)
  (\x : Nat + Bool,
     case x of inl nn + 3 | inr b ⇒ 0) (inl Bool 4)
(2)
  7
(3)
  case inl Bool 4 of inl nn + 3 | inr b ⇒ 0
(4)
  f (inl Bool 4)
What about this one?

  (\x : Nat + Bool,
     case x of inl nn + 3 | inr b ⇒ 0) (inl Bool 4)
(1)
  7
(2)
  case inl Bool 4 of inl nn + 3 | inr b ⇒ 0
(3)
  4 + 3
What about this one?

  case inl Bool 4 of inl nn + 3 | inr b ⇒ 0
(1) 4 + 3
(2) 7
(3) 0

Lists

Syntax:
       t ::=                Terms
           | ...
           | nil T
           | cons t t
           | case t of nil   => t
                      | x::x => t

       v ::=                Values
           | ...
           | nil T             nil value
           | cons v v          cons value

       T ::=                Types
           | ...
           | List T            list of Ts

Reduction:
t1 --> t1' (ST_Cons1)  

cons t1 t2 --> cons t1' t2
t2 --> t2' (ST_Cons2)  

cons v1 t2 --> cons v1 t2'
t1 --> t1' (ST_Lcase1)  

(case t1 of nil => t2 | xh::xt => t3) -->
(case t1' of nil => t2 | xh::xt => t3)
   (ST_LcaseNil)  

(case nil T1 of nil => t2 | xh::xt => t3)
--> t2
   (ST_LcaseCons)  

(case (cons vh vt) of nil => t2 | xh::xt => t3)
--> [xh:=vh,xt:=vt]t3

Typing:
   (T_Nil)  

Gamma ⊢ nil T1 ∈ List T1
Gamma ⊢ t1 ∈ T1      Gamma ⊢ t2 ∈ List T1 (T_Cons)  

Gamma ⊢ cons t1 t2 ∈ List T1
Gamma ⊢ t1 ∈ List T1
Gamma ⊢ t2 ∈ T2
(h>T1; t>List T1; Gamma) ⊢ t3 ∈ T2 (T_Lcase)  

Gamma ⊢ (case t1 of nil => t2 | h::t => t3) ∈ T2

General Recursion

Another facility found in most programming languages (including Coq) is the ability to define recursive functions. For example, we would like to be able to define the factorial function like this:
      fact = \x:Nat,
                if x=0 then 1 else x * (fact (pred x)))
Note that the right-hand side of this binder mentions the variable being bound -- something that is not allowed by our formalization of let above.
Directly formalizing this "recursive definition" mechanism is possible, but it requires some extra effort: in particular, we'd have to pass around an "environment" of recursive function definitions in the definition of the step relation.

Here is another way of presenting recursive functions that is a bit more verbose but equally powerful and much more straightforward to formalize: instead of writing recursive definitions, we will define a fixed-point operator called fix that performs the "unfolding" of the recursive definition in the right-hand side as needed, during reduction.
For example, instead of
      fact = \x:Nat,
                if x=0 then 1 else x * (fact (pred x)))
we will write:
      fact =
          fix
            (\f:Nat->Nat,
               \x:Nat,
                  if x=0 then 1 else x * (f (pred x)))

We can derive the latter from the former as follows:
  • In the right-hand side of the definition of fact, replace recursive references to fact by a fresh variable f.
  • Add an abstraction binding f at the front, with an appropriate type annotation. (Since we are using f in place of fact, which had type NatNat, we should require f to have the same type.) The new abstraction has type (NatNat) (NatNat).
  • Apply fix to this abstraction. This application has type NatNat.
  • Use all of this as the right-hand side of an ordinary let-binding for fact.

Syntax:
       t ::=                Terms
           | ...
           | fix t             fixed-point operator
Reduction:
t1 --> t1' (ST_Fix1)  

fix t1 --> fix t1'
   (ST_FixAbs)  

fix (\xf:T1.t1) --> [xf:=fix (\xf:T1.t1)] t1
Typing:
Gamma ⊢ t1 ∈ T1->T1 (T_Fix)  

Gamma ⊢ fix t1 ∈ T1

Let's see how ST_FixAbs works by reducing fact 3 = fix F 3, where
    F = (\f. \x. if x=0 then 1 else x * (f (pred x)))
(type annotations are omitted for brevity).
    fix F 3
--> ST_FixAbs + ST_App1
    (\x. if x=0 then 1 else x * (fix F (pred x))) 3
--> ST_AppAbs
    if 3=0 then 1 else 3 * (fix F (pred 3))
--> ST_If0_Nonzero
    3 * (fix F (pred 3))
--> ST_FixAbs + ST_Mult2
    3 * ((\x. if x=0 then 1 else x * (fix F (pred x))) (pred 3))
--> ST_PredNat + ST_Mult2 + ST_App2
    3 * ((\x. if x=0 then 1 else x * (fix F (pred x))) 2)
--> ST_AppAbs + ST_Mult2
    3 * (if 2=0 then 1 else 2 * (fix F (pred 2)))
--> ST_If0_Nonzero + ST_Mult2
    3 * (2 * (fix F (pred 2)))
--> ST_FixAbs + 2 x ST_Mult2
    3 * (2 * ((\x. if x=0 then 1 else x * (fix F (pred x))) (pred 2)))
--> ST_PredNat + 2 x ST_Mult2 + ST_App2
    3 * (2 * ((\x. if x=0 then 1 else x * (fix F (pred x))) 1))
--> ST_AppAbs + 2 x ST_Mult2
    3 * (2 * (if 1=0 then 1 else 1 * (fix F (pred 1))))
--> ST_If0_Nonzero + 2 x ST_Mult2
    3 * (2 * (1 * (fix F (pred 1))))
--> ST_FixAbs + 3 x ST_Mult2
    3 * (2 * (1 * ((\x. if x=0 then 1 else x * (fix F (pred x))) (pred 1))))
--> ST_PredNat + 3 x ST_Mult2 + ST_App2
    3 * (2 * (1 * ((\x. if x=0 then 1 else x * (fix F (pred x))) 0)))
--> ST_AppAbs + 3 x ST_Mult2
    3 * (2 * (1 * (if 0=0 then 1 else 0 * (fix F (pred 0)))))
--> ST_If0Zero + 3 x ST_Mult2
    3 * (2 * (1 * 1))
--> ST_MultNats + 2 x ST_Mult2
    3 * (2 * 1)
--> ST_MultNats + ST_Mult2
    3 * 2
--> ST_MultNats
    6

Records

As a final example, records can be presented as a generalization of pairs:
  • they are n-ary (rather than binary);
  • they are accessed by label (rather than position).

Syntax:
       t ::=                          Terms
           | ...
           | {i1=t1, ..., in=tn}         record
           | t.i                         projection

       v ::=                          Values
           | ...
           | {i1=v1, ..., in=vn}         record value

       T ::=                          Types
           | ...
           | {i1:T1, ..., in:Tn}         record type
This is a quite informal definition compared to previous ones:
  • it uses "..." in the syntax for records
  • it omits a usual side condition that the labels of a record should not contain repetitions.

Reduction:
ti --> ti' (ST_Rcd)  

{i1=v1, ..., im=vm, in=ti , ...}
--> {i1=v1, ..., im=vm, in=ti', ...}
t0 --> t0' (ST_Proj1)  

t0.i --> t0'.i
   (ST_ProjRcd)  

{..., i=vi, ...}.i --> vi
  • In the first rule, ti must be the leftmost field that is not a value;
  • In the last rule, there should be only one field called i, and all the other fields must contain values.

The typing rules are also simple:
Gamma ⊢ t1 ∈ T1     ...     Gamma ⊢ tn ∈ Tn (T_Rcd)  

Gamma ⊢ {i1=t1, ..., in=tn} ∈ {i1:T1, ..., in:Tn}
Gamma ⊢ t0 ∈ {..., i:Ti, ...} (T_Proj)  

Gamma ⊢ t0.i ∈ Ti
Because of all the informality in the notations we've chosen, formalizing all this takes some work. See the Records chapter for details.

Exercise: Formalizing the Extensions

Module STLCExtended.

Exercise: 3 stars, standard (STLCE_definitions)

In this series of exercises, you will formalize some of the extensions described in this chapter. We've provided the necessary additions to the syntax of terms and types, and we've included a few examples that you can test your definitions with to make sure they are working as expected. You'll fill in the rest of the definitions and extend all the proofs accordingly.
To get you started, we've provided implementations for:
  • numbers
  • sums
  • lists
  • unit
You need to complete the implementations for:
  • pairs
  • let (which involves binding)
  • fix
A good strategy is to work on the extensions one at a time, in separate passes, rather than trying to work through the file from start to finish in a single pass. For each definition or proof, begin by reading carefully through the parts that are provided for you, referring to the text in the Stlc chapter for high-level intuitions and the embedded comments for detailed mechanics.

Syntax

Inductive ty : Type :=
  | Ty_Arrow : tytyty
  | Ty_Nat : ty
  | Ty_Sum : tytyty
  | Ty_List : tyty
  | Ty_Unit : ty
  | Ty_Prod : tytyty.

Inductive tm : Type :=
  (* pure STLC *)
  | tm_var : stringtm
  | tm_app : tmtmtm
  | tm_abs : stringtytmtm
  (* numbers *)
  | tm_const: nattm
  | tm_succ : tmtm
  | tm_pred : tmtm
  | tm_mult : tmtmtm
  | tm_if0 : tmtmtmtm
  (* sums *)
  | tm_inl : tytmtm
  | tm_inr : tytmtm
  | tm_case : tmstringtmstringtmtm
          (* i.e., case t0 of inl x1 t1 | inr x2 t2 *)
  (* lists *)
  | tm_nil : tytm
  | tm_cons : tmtmtm
  | tm_lcase : tmtmstringstringtmtm
           (* i.e., case t1 of | nil t2 | x::y t3 *)
  (* unit *)
  | tm_unit : tm

  (* You are going to be working on the following extensions: *)

  (* pairs *)
  | tm_pair : tmtmtm
  | tm_fst : tmtm
  | tm_snd : tmtm
  (* let *)
  | tm_let : stringtmtmtm
         (* i.e., let x = t1 in t2 *)
  (* fix *)
  | tm_fix : tmtm.
Note that, for brevity, we've omitted booleans and instead provided a single if0 form combining a zero test and a conditional. That is, instead of writing
       if x = 0 then ... else ...
we'll write this:
       if0 x then ... else ...
Definition x : string := "x".
Definition y : string := "y".
Definition z : string := "z".

Hint Unfold x : core.
Hint Unfold y : core.
Hint Unfold z : core.

Declare Custom Entry stlc_ty.

Notation "<{ e }>" := e (e custom stlc at level 99).
Notation "<{{ e }}>" := e (e custom stlc_ty at level 99).
Notation "( x )" := x (in custom stlc, x at level 99).
Notation "( x )" := x (in custom stlc_ty, x at level 99).
Notation "x" := x (in custom stlc at level 0, x constr at level 0).
Notation "x" := x (in custom stlc_ty at level 0, x constr at level 0).
Notation "S -> T" := (Ty_Arrow S T) (in custom stlc_ty at level 50, right associativity).
Notation "x y" := (tm_app x y) (in custom stlc at level 1, left associativity).
Notation "\ x : t , y" :=
  (tm_abs x t y) (in custom stlc at level 90, x at level 99,
                     t custom stlc_ty at level 99,
                     y custom stlc at level 99,
                     left associativity).
Coercion tm_var : string >-> tm.

Notation "{ x }" := x (in custom stlc at level 1, x constr).

Notation "'Nat'" := Ty_Nat (in custom stlc_ty at level 0).
Notation "'succ' x" := (tm_succ x) (in custom stlc at level 0,
                                     x custom stlc at level 0).
Notation "'pred' x" := (tm_pred x) (in custom stlc at level 0,
                                     x custom stlc at level 0).
Notation "x * y" := (tm_mult x y) (in custom stlc at level 1,
                                      left associativity).
Notation "'if0' x 'then' y 'else' z" :=
  (tm_if0 x y z) (in custom stlc at level 89,
                    x custom stlc at level 99,
                    y custom stlc at level 99,
                    z custom stlc at level 99,
                    left associativity).
Coercion tm_const : nat >-> tm.

Notation "S + T" :=
  (Ty_Sum S T) (in custom stlc_ty at level 3, left associativity).
Notation "'inl' T t" := (tm_inl T t) (in custom stlc at level 0,
                                         T custom stlc_ty at level 0,
                                         t custom stlc at level 0).
Notation "'inr' T t" := (tm_inr T t) (in custom stlc at level 0,
                                         T custom stlc_ty at level 0,
                                         t custom stlc at level 0).
Notation "'case' t0 'of' '|' 'inl' x1 '=>' t1 '|' 'inr' x2 '=>' t2" :=
  (tm_case t0 x1 t1 x2 t2) (in custom stlc at level 89,
                               t0 custom stlc at level 99,
                               x1 custom stlc at level 99,
                               t1 custom stlc at level 99,
                               x2 custom stlc at level 99,
                               t2 custom stlc at level 99,
                               left associativity).

Notation "X * Y" :=
  (Ty_Prod X Y) (in custom stlc_ty at level 2, X custom stlc_ty, Y custom stlc_ty at level 0).
Notation "( x ',' y )" := (tm_pair x y) (in custom stlc at level 0,
                                                x custom stlc at level 99,
                                                y custom stlc at level 99).
Notation "t '.fst'" := (tm_fst t) (in custom stlc at level 0).
Notation "t '.snd'" := (tm_snd t) (in custom stlc at level 0).

Notation "'List' T" :=
  (Ty_List T) (in custom stlc_ty at level 4).
Notation "'nil' T" := (tm_nil T) (in custom stlc at level 0, T custom stlc_ty at level 0).
Notation "h '::' t" := (tm_cons h t) (in custom stlc at level 2, right associativity).
Notation "'case' t1 'of' '|' 'nil' '=>' t2 '|' x '::' y '=>' t3" :=
  (tm_lcase t1 t2 x y t3) (in custom stlc at level 89,
                              t1 custom stlc at level 99,
                              t2 custom stlc at level 99,
                              x constr at level 1,
                              y constr at level 1,
                              t3 custom stlc at level 99,
                              left associativity).

Notation "'Unit'" :=
  (Ty_Unit) (in custom stlc_ty at level 0).
Notation "'unit'" := tm_unit (in custom stlc at level 0).

Notation "'let' x '=' t1 'in' t2" :=
  (tm_let x t1 t2) (in custom stlc at level 0).

Notation "'fix' t" := (tm_fix t) (in custom stlc at level 0).

Substitution

Fixpoint subst (x : string) (s : tm) (t : tm) : tm :=
  match t with
  (* pure STLC *)
  | tm_var y
      if eqb_string x y then s else t
  | <{\y:T, t1}> ⇒
      if eqb_string x y then t else <{\y:T, [x:=s] t1}>
  | <{t1 t2}> ⇒
      <{([x:=s] t1) ([x:=s] t2)}>
  (* numbers *)
  | tm_const _
      t
  | <{succ t1}> ⇒
      <{succ [x := s] t1}>
  | <{pred t1}> ⇒
      <{pred [x := s] t1}>
  | <{t1 × t2}> ⇒
      <{ ([x := s] t1) × ([x := s] t2)}>
  | <{if0 t1 then t2 else t3}> ⇒
      <{if0 [x := s] t1 then [x := s] t2 else [x := s] t3}>
  (* sums *)
  | <{inl T2 t1}> ⇒
      <{inl T2 ( [x:=s] t1) }>
  | <{inr T1 t2}> ⇒
      <{inr T1 ( [x:=s] t2) }>
  | <{case t0 of | inl y1t1 | inr y2t2}> ⇒
      <{case ([x:=s] t0) of
         | inl y1 ⇒ { if eqb_string x y1 then t1 else <{ [x:=s] t1 }> }
         | inr y2 ⇒ {if eqb_string x y2 then t2 else <{ [x:=s] t2 }> } }>
  (* lists *)
  | <{nil _}> ⇒
      t
  | <{t1 :: t2}> ⇒
      <{ ([x:=s] t1) :: [x:=s] t2 }>
  | <{case t1 of | nilt2 | y1 :: y2t3}> ⇒
      <{case ( [x:=s] t1 ) of
        | nil ⇒ [x:=s] t2
        | y1 :: y2
        {if eqb_string x y1 then
           t3
         else if eqb_string x y2 then t3
              else <{ [x:=s] t3 }> } }>
  (* unit *)
  | <{unit}> ⇒ <{unit}>

  (* Complete the following cases. *)

  (* pairs *)
  (* FILL IN HERE *)
  (* let *)
  (* FILL IN HERE *)
  (* fix *)
  (* FILL IN HERE *)
  | _t (* ... and delete this line when you finish the exercise *)
  end

where "'[' x ':=' s ']' t" := (subst x s t) (in custom stlc).

Reduction

Next we define the values of our language.
Inductive value : tmProp :=
  (* In pure STLC, function abstractions are values: *)
  | v_abs : x T2 t1,
      value <{\x:T2, t1}>
  (* Numbers are values: *)
  | v_nat : n : nat,
      value <{n}>
  (* A tagged value is a value:  *)
  | v_inl : v T1,
      value v
      value <{inl T1 v}>
  | v_inr : v T1,
      value v
      value <{inr T1 v}>
  (* A list is a value iff its head and tail are values: *)
  | v_lnil : T1, value <{nil T1}>
  | v_lcons : v1 v2,
      value v1
      value v2
      value <{v1 :: v2}>
  (* A unit is always a value *)
  | v_unit : value <{unit}>
  (* A pair is a value if both components are: *)
  | v_pair : v1 v2,
      value v1
      value v2
      value <{(v1, v2)}>.

Hint Constructors value : core.

Reserved Notation "t '-->' t'" (at level 40).

Inductive step : tmtmProp :=
  (* pure STLC *)
  | ST_AppAbs : x T2 t1 v2,
         value v2
         <{(\x:T2, t1) v2}> --> <{ [x:=v2]t1 }>
  | ST_App1 : t1 t1' t2,
         t1 --> t1'
         <{t1 t2}> --> <{t1' t2}>
  | ST_App2 : v1 t2 t2',
         value v1
         t2 --> t2'
         <{v1 t2}> --> <{v1 t2'}>
  (* numbers *)
  | ST_Succ : t1 t1',
         t1 --> t1'
         <{succ t1}> --> <{succ t1'}>
  | ST_SuccNat : n : nat,
         <{succ n}> --> <{ {S n} }>
  | ST_Pred : t1 t1',
         t1 --> t1'
         <{pred t1}> --> <{pred t1'}>
  | ST_PredNat : n:nat,
         <{pred n}> --> <{ {n - 1} }>
  | ST_Mulconsts : n1 n2 : nat,
         <{n1 × n2}> --> <{ {n1 × n2} }>
  | ST_Mult1 : t1 t1' t2,
         t1 --> t1'
         <{t1 × t2}> --> <{t1' × t2}>
  | ST_Mult2 : v1 t2 t2',
         value v1
         t2 --> t2'
         <{v1 × t2}> --> <{v1 × t2'}>
  | ST_If0 : t1 t1' t2 t3,
         t1 --> t1'
         <{if0 t1 then t2 else t3}> --> <{if0 t1' then t2 else t3}>
  | ST_If0_Zero : t2 t3,
         <{if0 0 then t2 else t3}> --> t2
  | ST_If0_Nonzero : n t2 t3,
         <{if0 {S n} then t2 else t3}> --> t3
  (* sums *)
  | ST_Inl : t1 t1' T2,
        t1 --> t1'
        <{inl T2 t1}> --> <{inl T2 t1'}>
  | ST_Inr : t2 t2' T1,
        t2 --> t2'
        <{inr T1 t2}> --> <{inr T1 t2'}>
  | ST_Case : t0 t0' x1 t1 x2 t2,
        t0 --> t0'
        <{case t0 of | inl x1t1 | inr x2t2}> -->
        <{case t0' of | inl x1t1 | inr x2t2}>
  | ST_CaseInl : v0 x1 t1 x2 t2 T2,
        value v0
        <{case inl T2 v0 of | inl x1t1 | inr x2t2}> --> <{ [x1:=v0]t1 }>
  | ST_CaseInr : v0 x1 t1 x2 t2 T1,
        value v0
        <{case inr T1 v0 of | inl x1t1 | inr x2t2}> --> <{ [x2:=v0]t2 }>
  (* lists *)
  | ST_Cons1 : t1 t1' t2,
       t1 --> t1'
       <{t1 :: t2}> --> <{t1' :: t2}>
  | ST_Cons2 : v1 t2 t2',
       value v1
       t2 --> t2'
       <{v1 :: t2}> --> <{v1 :: t2'}>
  | ST_Lcase1 : t1 t1' t2 x1 x2 t3,
       t1 --> t1'
       <{case t1 of | nilt2 | x1 :: x2t3}> -->
       <{case t1' of | nilt2 | x1 :: x2t3}>
  | ST_LcaseNil : T1 t2 x1 x2 t3,
       <{case nil T1 of | nilt2 | x1 :: x2t3}> --> t2
  | ST_LcaseCons : v1 vl t2 x1 x2 t3,
       value v1
       value vl
       <{case v1 :: vl of | nilt2 | x1 :: x2t3}>
         --> <{ [x2 := vl] ([x1 := v1] t3) }>

  (* Add rules for the following extensions. *)

  (* pairs *)
  (* FILL IN HERE *)
  (* let *)
  (* FILL IN HERE *)
  (* fix *)
  (* FILL IN HERE *)

  where "t '-->' t'" := (step t t').

Notation multistep := (multi step).
Notation "t1 '-->*' t2" := (multistep t1 t2) (at level 40).

Hint Constructors step : core.

Typing

Definition context := partial_map ty.
Next we define the typing rules. These are nearly direct transcriptions of the inference rules shown above.

Inductive has_type : contexttmtyProp :=
  (* pure STLC *)
  | T_Var : Gamma x T1,
      Gamma x = Some T1
      Gammax \in T1
  | T_Abs : Gamma x T1 T2 t1,
    (x > T2 ; Gamma) ⊢ t1 \in T1
      Gamma ⊢ \x:T2, t1 \in (T2T1)
  | T_App : T1 T2 Gamma t1 t2,
      Gammat1 \in (T2T1) →
      Gammat2 \in T2
      Gammat1 t2 \in T1
  (* numbers *)
  | T_Nat : Gamma (n : nat),
      Gamman \in Nat
  | T_Succ : Gamma t,
      Gammat \in Nat
      Gammasucc t \in Nat
  | T_Pred : Gamma t,
      Gammat \in Nat
      Gammapred t \in Nat
  | T_Mult : Gamma t1 t2,
      Gammat1 \in Nat
      Gammat2 \in Nat
      Gammat1 × t2 \in Nat
  | T_If0 : Gamma t1 t2 t3 T0,
      Gammat1 \in Nat
      Gammat2 \in T0
      Gammat3 \in T0
      Gammaif0 t1 then t2 else t3 \in T0
  (* sums *)
  | T_Inl : Gamma t1 T1 T2,
      Gammat1 \in T1
      Gamma ⊢ (inl T2 t1) \in (T1 + T2)
  | T_Inr : Gamma t2 T1 T2,
      Gammat2 \in T2
      Gamma ⊢ (inr T1 t2) \in (T1 + T2)
  | T_Case : Gamma t0 x1 T1 t1 x2 T2 t2 T3,
      Gammat0 \in (T1 + T2) →
      (x1 > T1 ; Gamma) ⊢ t1 \in T3
      (x2 > T2 ; Gamma) ⊢ t2 \in T3
      Gamma ⊢ (case t0 of | inl x1t1 | inr x2t2) \in T3
  (* lists *)
  | T_Nil : Gamma T1,
      Gamma ⊢ (nil T1) \in (List T1)
  | T_Cons : Gamma t1 t2 T1,
      Gammat1 \in T1
      Gammat2 \in (List T1) →
      Gamma ⊢ (t1 :: t2) \in (List T1)
  | T_Lcase : Gamma t1 T1 t2 x1 x2 t3 T2,
      Gammat1 \in (List T1) →
      Gammat2 \in T2
      (x1 > T1 ; x2 > <{{List T1}}> ; Gamma) ⊢ t3 \in T2
      Gamma ⊢ (case t1 of | nilt2 | x1 :: x2t3) \in T2
  (* unit *)
  | T_Unit : Gamma,
      Gammaunit \in Unit

  (* Add rules for the following extensions. *)

  (* pairs *)
  (* FILL IN HERE *)
  (* let *)
  (* FILL IN HERE *)
  (* fix *)
  (* FILL IN HERE *)

where "Gamma '⊢' t '∈' T" := (has_type Gamma t T).

Hint Constructors has_type : core.

Examples

Exercise: 3 stars, standard (STLCE_examples)

This section presents formalized versions of the examples from above (plus several more).
For each example, uncomment proofs and replace Admitted by Qed once you've implemented enough of the definitions for the tests to pass.
The examples at the beginning focus on specific features; you can use these to make sure your definition of a given feature is reasonable before moving on to extending the proofs later in the file with the cases relating to this feature. The later examples require all the features together, so you'll need to come back to these when you've got all the definitions filled in.
Module Examples.

Preliminaries

First, let's define a few variable names:
Open Scope string_scope.
(*  NOTATION: LATER: These can all be Notations -- just make sure to add a
   Hint Unfold for each one. *)

Notation x := "x".
Notation y := "y".
Notation a := "a".
Notation f := "f".
Notation g := "g".
Notation l := "l".
Notation k := "k".
Notation i1 := "i1".
Notation i2 := "i2".
Notation processSum := "processSum".
Notation n := "n".
Notation eq := "eq".
Notation m := "m".
Notation evenodd := "evenodd".
Notation even := "even".
Notation odd := "odd".
Notation eo := "eo".
Next, a bit of Coq hackery to automate searching for typing derivations. You don't need to understand this bit in detail -- just have a look over it so that you'll know what to look for if you ever find yourself needing to make custom extensions to auto.
The following Hint declarations say that, whenever auto arrives at a goal of the form (Gamma (tm_app e1 e1) \in T), it should consider eapply T_App, leaving an existential variable for the middle type T1, and similar for lcase. That variable will then be filled in during the search for type derivations for e1 and e2. We also include a hint to "try harder" when solving equality goals; this is useful to automate uses of T_Var (which includes an equality as a precondition).
Hint Extern 2 (has_type _ (tm_app _ _) _) ⇒
  eapply T_App; auto : core.
Hint Extern 2 (has_type _ (tm_lcase _ _ _ _ _) _) ⇒
  eapply T_Lcase; auto : core.
Hint Extern 2 (_ = _) ⇒ compute; reflexivity : core.

Numbers

Module Numtest.

(* tm_test0 (pred (succ (pred (2 * 0))) then 5 else 6 *)
Definition test :=
  <{if0
    (pred
      (succ
        (pred
          (2 × 0))))
    then 5
    else 6}>.

Example typechecks :
  emptytest \in Nat.
Proof.
  unfold test.
  (* This typing derivation is quite deep, so we need
     to increase the max search depth of auto from the
     default 5 to 10. *)

  auto 10.
(* FILL IN HERE *) Admitted.

Example numtest_reduces :
  test -->* 5.
Proof.
(* 
  unfold test. normalize.
*)

(* FILL IN HERE *) Admitted.

End Numtest.

Products

Module Prodtest.

(* ((5,6),7).fst.tm_snd *)
Definition test :=
  <{((5,6),7).fst.snd}>.

Example typechecks :
  emptytest \in Nat.
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)

Example reduces :
  test -->* 6.
Proof.
(* 
  unfold test. normalize.
*)

(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)

End Prodtest.

let

Module LetTest.

(* let x = pred 6 in succ x *)
Definition test :=
  <{let x = (pred 6) in
    (succ x)}>.

Example typechecks :
  emptytest \in Nat.
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)

Example reduces :
  test -->* 6.
Proof.
(* 
  unfold test. normalize.
*)

(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)

End LetTest.

Sums

Module Sumtest1.

(* case (inl Nat 5) of
     inl x => x
   | inr y => y *)


Definition test :=
  <{case (inl Nat 5) of
    | inl xx
    | inr yy}>.

Example typechecks :
  emptytest \in Nat.
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.

Example reduces :
  test -->* 5.
Proof.
(* 
  unfold test. normalize.
*)

(* FILL IN HERE *) Admitted.

End Sumtest1.

Module Sumtest2.

(* let processSum =
     \x:Nat+Nat.
        case x of
          inl n => n
          inr n => tm_test0 n then 1 else 0 in
   (processSum (inl Nat 5), processSum (inr Nat 5))    *)


Definition test :=
  <{let processSum =
    (\x:Nat + Nat,
      case x of
       | inl nn
       | inr n ⇒ (if0 n then 1 else 0)) in
    (processSum (inl Nat 5), processSum (inr Nat 5))}>.

Example typechecks :
  emptytest \in (Nat × Nat).
Proof. unfold test. eauto 15. (* FILL IN HERE *) Admitted.

Example reduces :
  test -->* <{(5, 0)}>.
Proof.
(* 
  unfold test. normalize.
*)

(* FILL IN HERE *) Admitted.

End Sumtest2.

Lists

Module ListTest.

(* let l = cons 5 (cons 6 (nil Nat)) in
   case l of
     nil => 0
   | x::y => x*x *)


Definition test :=
  <{let l = (5 :: 6 :: (nil Nat)) in
    case l of
    | nil ⇒ 0
    | x :: y ⇒ (x × x)}>.

Example typechecks :
  emptytest \in Nat.
Proof. unfold test. eauto 20. (* FILL IN HERE *) Admitted.

Example reduces :
  test -->* 25.
Proof.
(* 
  unfold test. normalize.
*)

(* FILL IN HERE *) Admitted.

End ListTest.

fix

Module FixTest1.

(* fact := fix
             (\f:nat->nat.
                \a:nat.
                   test a=0 then 1 else a * (f (pred a))) *)

Definition fact :=
  <{fix
      (\f:NatNat,
        \a:Nat,
         if0 a then 1 else (a × (f (pred a))))}>.
(Warning: you may be able to typecheck fact but still have some rules wrong!)
Example typechecks :
  emptyfact \in (NatNat).
Proof. unfold fact. auto 10. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)

Example reduces :
  <{fact 4}> -->* 24.
Proof.
(* 
  unfold fact. normalize.
*)

(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)

End FixTest1.

Module FixTest2.

(* map :=
     \g:nat->nat.
       fix
         (\f:nat->nat.
            \l:nat.
               case l of
               |  -> 
               | x::l -> (g x)::(f l)) *)

Definition map :=
  <{ \g:NatNat,
       fix
         (\f:(List Nat)->(List Nat),
            \l:List Nat,
               case l of
               | nilnil Nat
               | x::l ⇒ ((g x)::(f l)))}>.

Example typechecks :
  emptymap \in
    ((NatNat) → ((List Nat) → (List Nat))).
Proof. unfold map. auto 10. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)

Example reduces :
  <{map (\a:Nat, succ a) (1 :: 2 :: (nil Nat))}>
  -->* <{2 :: 3 :: (nil Nat)}>.
Proof.
(* 
  unfold map. normalize.
*)

(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)

End FixTest2.

Module FixTest3.

(* equal =
      fix
        (\eq:Nat->Nat->Bool.
           \m:Nat. \n:Nat.
             tm_test0 m then (tm_test0 n then 1 else 0)
             else tm_test0 n then 0
             else eq (pred m) (pred n))   *)


Definition equal :=
  <{fix
        (\eq:NatNatNat,
           \m:Nat, \n:Nat,
             if0 m then (if0 n then 1 else 0)
             else (if0 n
                   then 0
                   else (eq (pred m) (pred n))))}>.

Example typechecks :
  emptyequal \in (NatNatNat).
Proof. unfold equal. auto 10. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)

Example reduces :
  <{equal 4 4}> -->* 1.
Proof.
(* 
  unfold equal. normalize.
*)

(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)

Example reduces2 :
  <{equal 4 5}> -->* 0.
Proof.
(* 
  unfold equal. normalize.
*)

(* FILL IN HERE *) Admitted.

End FixTest3.

Module FixTest4.

(* let evenodd =
         fix
           (\eo: (Nat->Nat * Nat->Nat).
              let e = \n:Nat. tm_test0 n then 1 else eo.tm_snd (pred n) in
              let o = \n:Nat. tm_test0 n then 0 else eo.tm_fst (pred n) in
              (e,o)) in
    let even = evenodd.tm_fst in
    let odd  = evenodd.tm_snd in
    (even 3, even 4)
*)


Definition eotest :=
<{let evenodd =
         fix
           (\eo: ((NatNat) × (NatNat)),
              (\n:Nat, if0 n then 1 else (eo.snd (pred n)),
               \n:Nat, if0 n then 0 else (eo.fst (pred n)))) in
    let even = evenodd.fst in
    let odd = evenodd.snd in
    (even 3, even 4)}>.

Example typechecks :
  emptyeotest \in (Nat × Nat).
Proof. unfold eotest. eauto 30. (* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: typechecks *)

Example reduces :
  eotest -->* <{(0, 1)}>.
Proof.
(* 
  unfold eotest. normalize.
*)

(* FILL IN HERE *) Admitted.
(* GRADE_THEOREM 0.25: reduces *)

End FixTest4.

End Examples.

Properties of Typing

The proofs of progress and preservation for this enriched system are essentially the same (though of course longer) as for the pure STLC.

Progress

Exercise: 3 stars, standard (STLCE_progress)

Complete the proof of progress.
Theorem: Suppose empty ⊢ t ∈ T. Then either 1. t is a value, or 2. t --> t' for some t'.
Proof: By induction on the given typing derivation.
Theorem progress : t T,
     emptyt \in T
     value t t', t --> t'.
Proof with eauto.
  intros t T Ht.
  remember empty as Gamma.
  generalize dependent HeqGamma.
  induction Ht; intros HeqGamma; subst.
  - (* T_Var *)
    (* The final rule in the given typing derivation cannot be
       T_Var, since it can never be the case that
       empty x \in T (since the context is empty). *)

    discriminate H.
  - (* T_Abs *)
    (* If the T_Abs rule was the last used, then
       t = \ x0 : T2, t1, which is a value. *)

    left...
  - (* T_App *)
    (* If the last rule applied was T_App, then t = t1 t2,
       and we know from the form of the rule that
         empty t1 \in T1 T2
         empty t2 \in T1
       By the induction hypothesis, each of t1 and t2 either is
       a value or can take a step. *)

    right.
    destruct IHHt1; subst...
    + (* t1 is a value *)
      destruct IHHt2; subst...
      × (* t2 is a value *)
        (* If both t1 and t2 are values, then we know that
           t1 = \x0 : T0, t11, since abstractions are the
           only values that can have an arrow type.  But
           (\x0 : T0, t11) t2 --> [x:=t2]t11 by ST_AppAbs. *)

        destruct H; try solve_by_invert.
         <{ [x0 := t2]t1 }>...
      × (* t2 steps *)
        (* If t1 is a value and t2 --> t2',
           then t1 t2 --> t1 t2' by ST_App2. *)

        destruct H0 as [t2' Hstp]. <{t1 t2'}>...
    + (* t1 steps *)
      (* Finally, If t1 --> t1', then t1 t2 --> t1' t2
         by ST_App1. *)

      destruct H as [t1' Hstp]. <{t1' t2}>...
  - (* T_Nat *)
    left...
  - (* T_Succ *)
    right.
    destruct IHHt...
    + (* t1 is a value *)
      destruct H; try solve_by_invert.
       <{ {S n} }>...
    + (* t1 steps *)
      destruct H as [t' Hstp].
       <{succ t'}>...
  - (* T_Pred *)
    right.
    destruct IHHt...
    + (* t1 is a value *)
      destruct H; try solve_by_invert.
       <{ {n - 1} }>...
    + (* t1 steps *)
      destruct H as [t' Hstp].
       <{pred t'}>...
  - (* T_Mult *)
    right.
    destruct IHHt1...
    + (* t1 is a value *)
      destruct IHHt2...
      × (* t2 is a value *)
        destruct H; try solve_by_invert.
        destruct H0; try solve_by_invert.
         <{ {n × n0} }>...
      × (* t2 steps *)
        destruct H0 as [t2' Hstp].
         <{t1 × t2'}>...
    + (* t1 steps *)
      destruct H as [t1' Hstp].
       <{t1' × t2}>...
  - (* T_Test0 *)
    right.
    destruct IHHt1...
    + (* t1 is a value *)
      destruct H; try solve_by_invert.
      destruct n as [|n'].
      × (* n1=0 *)
         t2...
      × (* n1<>0 *)
         t3...
    + (* t1 steps *)
      destruct H as [t1' H0].
       <{if0 t1' then t2 else t3}>...
  - (* T_Inl *)
    destruct IHHt...
    + (* t1 steps *)
      right. destruct H as [t1' Hstp]...
      (* exists (tm_inl _ t1')... *)
  - (* T_Inr *)
    destruct IHHt...
    + (* t1 steps *)
      right. destruct H as [t1' Hstp]...
      (* exists (tm_inr _ t1')... *)
  - (* T_Case *)
    right.
    destruct IHHt1...
    + (* t0 is a value *)
      destruct H; try solve_by_invert.
      × (* t0 is inl *)
         <{ [x1:=v]t1 }>...
      × (* t0 is inr *)
         <{ [x2:=v]t2 }>...
    + (* t0 steps *)
      destruct H as [t0' Hstp].
       <{case t0' of | inl x1t1 | inr x2t2}>...
  - (* T_Nil *)
    left...
  - (* T_Cons *)
    destruct IHHt1...
    + (* head is a value *)
      destruct IHHt2...
      × (* tail steps *)
        right. destruct H0 as [t2' Hstp].
         <{t1 :: t2'}>...
    + (* head steps *)
      right. destruct H as [t1' Hstp].
       <{t1' :: t2}>...
  - (* T_Lcase *)
    right.
    destruct IHHt1...
    + (* t1 is a value *)
      destruct H; try solve_by_invert.
      × (* t1=tm_nil *)
         t2...
      × (* t1=tm_cons v1 v2 *)
         <{ [x2:=v2]([x1:=v1]t3) }>...
    + (* t1 steps *)
      destruct H as [t1' Hstp].
       <{case t1' of | nilt2 | x1 :: x2t3}>...
  - (* T_Unit *)
    left...

  (* Complete the proof. *)

  (* pairs *)
  (* FILL IN HERE *)
  (* let *)
  (* FILL IN HERE *)
  (* fix *)
  (* FILL IN HERE *)
(* FILL IN HERE *) Admitted.

Weakening

The weakening claim and (automated) proof are exactly the same as for the original STLC. (We only need to increase the search depth of eauto to 7.)
Lemma weakening : Gamma Gamma' t T,
     inclusion Gamma Gamma'
     Gammat \in T
     Gamma't \in T.
Proof.
  intros Gamma Gamma' t T H Ht.
  generalize dependent Gamma'.
  induction Ht; eauto 7 using inclusion_update.
Qed.

Lemma weakening_empty : Gamma t T,
     emptyt \in T
     Gammat \in T.
Proof.
  intros Gamma t T.
  eapply weakening.
  discriminate.
Qed.

Substitution

Exercise: 2 stars, standard (STLCE_subst_preserves_typing)

Complete the proof of substitution_preserves_typing.
Lemma substitution_preserves_typing : Gamma x U t v T,
  (x > U ; Gamma) ⊢ t \in T
  emptyv \in U
  Gamma ⊢ [x:=v]t \in T.
Proof with eauto.
  intros Gamma x U t v T Ht Hv.
  generalize dependent Gamma. generalize dependent T.
  (* Proof: By induction on the term t.  Most cases follow
     directly from the IH, with the exception of var
     and abs. These aren't automatic because we must
     reason about how the variables interact. The proofs
     of these cases are similar to the ones in STLC.
     We refer the reader to StlcProp.v for explanations. *)

  induction t; intros T Gamma H;
  (* in each case, we'll want to get at the derivation of H *)
    inversion H; clear H; subst; simpl; eauto.
  - (* var *)
    rename s into y. destruct (eqb_stringP x y); subst.
    + (* x=y *)
      rewrite update_eq in H2.
      injection H2 as H2; subst.
      apply weakening_empty. assumption.
    + (* x<>y *)
      apply T_Var. rewrite update_neq in H2; auto.
  - (* abs *)
    rename s into y, t into S.
    destruct (eqb_stringP x y); subst; apply T_Abs.
    + (* x=y *)
      rewrite update_shadow in H5. assumption.
    + (* x<>y *)
      apply IHt.
      rewrite update_permute; auto.

  - (* tm_case *)
    rename s into x1, s0 into x2.
    eapply T_Case...
    + (* left arm *)
      destruct (eqb_stringP x x1); subst.
      × (* x = x1 *)
        rewrite update_shadow in H8. assumption.
      × (* x <> x1 *)
        apply IHt2.
        rewrite update_permute; auto.
    + (* right arm *)
      destruct (eqb_stringP x x2); subst.
      × (* x = x2 *)
        rewrite update_shadow in H9. assumption.
      × (* x <> x2 *)
        apply IHt3.
        rewrite update_permute; auto.
  - (* tm_lcase *)
    rename s into y1, s0 into y2.
    eapply T_Lcase...
    destruct (eqb_stringP x y1); subst.
    + (* x=y1 *)
      destruct (eqb_stringP y2 y1); subst.
      × (* y2=y1 *)
        repeat rewrite update_shadow in H9.
        rewrite update_shadow.
        assumption.
      × rewrite update_permute in H9; [|assumption].
        rewrite update_shadow in H9.
        rewrite update_permute; assumption.
    + (* x<>y1 *)
      destruct (eqb_stringP x y2); subst.
      × (* x=y2 *)
        rewrite update_shadow in H9.
        assumption.
      × (* x<>y2 *)
        apply IHt3.
        rewrite (update_permute _ _ _ _ _ _ n0) in H9.
        rewrite (update_permute _ _ _ _ _ _ n) in H9.
        assumption.

  (* Complete the proof. *)

  (* FILL IN HERE *) Admitted.

Preservation

Exercise: 3 stars, standard (STLCE_preservation)

Complete the proof of preservation.
Theorem preservation : t t' T,
     emptyt \in T
     t --> t'
     emptyt' \in T.
Proof with eauto.
  intros t t' T HT. generalize dependent t'.
  remember empty as Gamma.
  (* Proof: By induction on the given typing derivation.  Many
     cases are contradictory (T_VarT_Abs).  We show just
     the interesting ones. Again, we refer the reader to
     StlcProp.v for explanations. *)

  induction HT;
    intros t' HE; subst; inversion HE; subst...
  - (* T_App *)
    inversion HE; subst...
    + (* ST_AppAbs *)
      apply substitution_preserves_typing with T2...
      inversion HT1...
  (* T_Case *)
  - (* ST_CaseInl *)
    inversion HT1; subst.
    eapply substitution_preserves_typing...
  - (* ST_CaseInr *)
    inversion HT1; subst.
    eapply substitution_preserves_typing...
  - (* T_Lcase *)
    + (* ST_LcaseCons *)
      inversion HT1; subst.
      apply substitution_preserves_typing with <{{List T1}}>...
      apply substitution_preserves_typing with T1...

  (* Complete the proof. *)

  (* fst and snd *)
  (* FILL IN HERE *)
  (* let *)
  (* FILL IN HERE *)
  (* fix *)
  (* FILL IN HERE *)
(* FILL IN HERE *) Admitted.
End STLCExtended.