
CMSC389E Akilesh Praveen

CMSC389E Project 2:
Arithmetic Logic Unit-
Adders & Multipliers
Assigned Monday October 11

Due Wednesday October 20

1 The Joy of Mathematics
Now that we’re done building the logical portion of the ALU, it’s only right that we

attack the arithmetic portion. In this project, we’re going to use our newfound knowledge
of Adders to design some much needed mathematical architecture for our ALU. Specifically,
we’re going to build in the ability to add and multiply 3-bit numbers.

This section will focus a lot on how you go about implementing this architecture in
terms of where you place the adders and how you debug them. As such- a word of advice
before you begin. The best way to do this project is to build one single adders, properly unit
test it with a bunch of test cases, and then when you know that it works, copy paste it over
and over to achieve the 3-bit adding functionality that we’re looking for. (And afterwards,
the multiplier).

This project comes in two parts- the first is the implementation of the 3-bit adder,
and the second is the implementation of the 3-bit multiplier. We have split testing into two
distinct phases for this reason- first, you will build your 3-bit adder and test it, then you will
build your 3-bit multplier.

2 Conceptual Overview: Addition and Multiplication
Adddition and multiplication are processes that we usually can perform as second-

nature now, but part of learning how to be a good computer architecture designer is figuring
out how one can take these mundane tasks that we as humans perform very easily, and
distilling them down to systematic, methodical tasks that any set of logic gates can perform.

These answers come to us in the form of Adders, one of the most basic logical circuits
for Arithmetic. You will be building quite a few of them for this project. (Or, preferably,
building one of them and then copying them a bunch using your copying method of choice)



CMSC389E Akilesh Praveen

3 Part A: Building the Adders
This project builds upon your Project 1 Implementation. In order to correctly load it

up, please copy your Project 1 world (you can do this manually, in the saves directory of
Minecraft) into a Project 2 world. Ensure that you name it Project2. Then, open the world
and remove all the project 1 input/output blocks so that you may load the new project.

We will start by loading the appropriate blocks for the first part of this project. Specif-
ically, we will be building out the 3-bit adder. To do this, run the following command.

/test load 2

Firstly, you will see that you have the same input blocks at your disposal. You will be
building a three bit adder using both input buses, and deliver that output to the outputs
labelled oAdder0, oAdder1, oAdder2, oAdder3.

4 Part A: Schematics
For reference, the adder you will be building and testing looks like this. Remember,

in order to achieve a 3-bit adder, you’ll just be chaining full adders together and connecting
the carry-out bits of previous adders to the carry-in bits of the next adders.

Note that you will have one more carry-out bit to deal with after the fact. This means
that you will take the sum of the first pair of adders and deliver it to oAdder0, the sum of
the second pair of adders and deliver it to oAdder1, the sum of the third pair of adders and
deliver it to oAdder2, and finally take the carry-out from the third pair of adders and deliver
that to oAdder3. Make sure, of course, that you are taking the carry-out bits of each pair of
adders and delivering them to the carry-in of the appropriate other adder when necessary.

You are expected to extend your output buses from your implementation of Project 1
in order to create this architecture. Refer to the diagram below.

iA0 iA1iA2 iB0 iB1iB2

oAdder0

oAdder1

oAdder2

full adder

full adder

full adder

oAdder3



CMSC389E Akilesh Praveen

5 Submission Of Part A
You will be submitting this solution with the Part B solution for this project. You

will only be submitting one map, however, so for this part, simply take a screenshot of your
tests passing the adder tests for part A.

Running the following command should invoke the tests.

/test start

Once you pass all the tests, take a screencap of them passing, and save it. You will
include this screenshot in the final submission. When you are ready, move onto Part B of
the project below.

6 Part B: Building the Multipliers
Now that we’ve built the adders, this next bit should be easy. Recall that in class we

spoke about multiplication in our particular digital logic setup just being repeated addition.
In that same sense, we’re going to simply take the addition circuit that we just produced,
make a copy of it, and extend it to be a multiplication circuit.

Since we haven’t been over this stuff in CMSC250 explicitly, I suggest you understand
the relation between long multiplication and the actual multiplier circuit before going ahead
with your implementation. You’ll find this in the form of a step by step instruction set in
the most recent slide deck for the class. It will help with implementation, and will help with
testing.

For part B of this project, you’ll make a new world by copying all of your content from
Part A (a.k.a your Project2 world) over into a new world called Project3. (Same process as
you went through to create the Project2 world as described earlier)

As you did in Part A, ensure that you are able to load the testing setup for this portion
of the project. You may do this using the following command:

/test load 3

You will see that the in-nodes remain unchanged from the previous part of the project.
This is to be expected- instead of adding two 3-bit numbers, we will instead be multiplying
them.

As we mentioned previously, this is quite the trivial task after you have taken care of
the creation of the Adders. You will merely take these inputs and feed them into a setup
consisting of two 3-bit adders in order to produce a meaningful solution. Keep in mind that



CMSC389E Akilesh Praveen

our multiplication solution will be 6 bits of output here, as we will now have to be dealing
with larger output numbers than what mere addition can produce.

7 Part B: Schematics
As you may recall from class, (combinatorial) multipliers are just large groups

of adders. As such, we have defined Part B of this project in terms of the 3-bit adder you
have just built! Just a bit more copy pasting and connecting, and you’re good to go!

iA0 iA1iA2 iB0 iB1iB2

full adder

a2 a1 a0 b2 b1 b0

0

co s2 s1 s0

full adder

a2 a1 a0 b2 b1 b0

co s2 s1 s0

o5 o4 o3 o2 o1 o0

In this diagram, the blocks labelled ’full adder’ are simply just copy-pastes (use struc-
ture blocks, clone, or worldedit!) of the adder you created in Part A. Just string those
together with a few AND gates (which you can also copy over from your logical ALU section)
and you should be good to go.

You’ll note that input b2 of one of the full adders is an orange zero. That just means
that no signal should be going in there, i.e. that input should always be zero.



CMSC389E Akilesh Praveen

8 Testing Part B
It’s worth noting that at this point, the speed of the actual redstone signals traveling

through the circuits catches up with us. In other words, our CPU is showing its first signs
of settling time! As mentioned in the conceptual overview section, it’s important that we
take this settling time into account when we attempt to avoid race conditions.

For this reason, we’ll want to run the test command here with a bit of a delay, between
1 and 3 seconds, if we want to ensure correctness in our testing and output.

You can do this by running the test command with the following syntax, where number
of seconds represents the delay that you want to enforce between each test.

/test start <number of seconds>

9 Submission Of Part B
You will be submitting this solution with the Part A solution for this project. You

will only be submitting one map, however, so for this part, simply take a screenshot of your
tests passing the multiplier tests for part B.

Running the following command should invoke the tests.

/test start

Remember to add a delay this time, especially if you see some tests failing unnecessarily.
We will most likely be running your tests with a delay of 2 seconds, so include a small
comment on your submission if your implementation needs more settling time than that.

After all is done, submit the following three things to the ELMS assignment.

• Screenshot of Project 2 Part A (Project2) tests passing

• Screenshot of Project 2 Part B (Project3) tests passing

• Your final Project3 world, containing all of your work from P1 up till P2 now. (Logic
gates, Adder, Multiplier)

Congratulations, you’re done! As always, ping us on Piazza with any questions, or
send us an email.


