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Memory Management

• Background

• Swapping 

• Contiguous Memory Allocation

• Segmentation

• Paging

• Structure of the Page Table

• Example: The Intel 32 and 64-bit Architectures

• Example: ARM Architecture
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Objectives

• To provide a detailed description of various ways of organizing 
memory hardware

• To discuss various memory-management techniques, including paging 
and segmentation

• To provide a detailed description of the Intel Pentium, which supports 
both pure segmentation and segmentation with paging
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Desirable Features

• Very large address space

• Ability to execute partially loaded programs

• Dynamic Relocatability

• Sharing 

• Protection
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Binding and Multiple Mappings

• Binding
• Associating an address to a location in an address space

• Mapping
• Translating one address to another address

• Each address is defined in an address space

• Mapping one address space to another address space
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Address space

• An array of cells each with a unique address

• Addresses – n bit integer
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Background

• Program must be brought (from disk)  into memory and placed within 
a process for it to be run

• Main memory and registers are only storage CPU can access directly

• Memory unit only sees a stream of addresses + read requests, or 
address + data and write requests

• Register access in one CPU clock (or less)

• Main memory can take many cycles, causing a stall

• Cache sits between main memory and CPU registers

• Protection of memory required to ensure correct operation
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Base and Limit Registers

• A pair of base and limit registers define the logical address space

• CPU must check every memory access generated in user mode to be 
sure it is between base and limit for that user
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Hardware Address Protection
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Address Binding

• Programs on disk, ready to be brought into memory to execute form an input queue

• Without support, must be loaded into address 0000

• Inconvenient to have first user process physical address always at 0000 

• How can it not be?

• Further, addresses represented in different ways at different stages of a program’s life

• Source code addresses usually symbolic

• Compiled code addresses bind to relocatable addresses

• i.e. “14 bytes from beginning of this module”

• Linker or loader will bind relocatable addresses to absolute addresses

• i.e. 74014

• Each binding maps one address space to another
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Binding of Instructions and Data to Memory

• Address binding of instructions and data to memory addresses can 
happen at three different stages
• Compile time:  If memory location known a priori, absolute code can be 

generated; must recompile code if starting location changes

• Load time:  Must generate relocatable code if memory location is not known 
at compile time

• Execution time:  Binding delayed until run time if the process can be moved 
during its execution from one memory segment to another
• Need hardware support for address maps (e.g., base and limit registers)
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Multistep Processing of a User Program 
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Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a separate physical 
address space is central to proper memory management
• Logical address – generated by the CPU; also referred to as virtual address
• Physical address – address seen by the memory unit

• Logical and physical addresses are the same in compile-time and load-time 
address-binding schemes; logical (virtual) and physical addresses differ in 
execution-time address-binding scheme

• Logical address space is the set of all logical addresses generated by a 
program

• Physical address space is the set of all physical addresses generated by a 
program
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Memory-Management Unit (MMU)

• Hardware device that at run time maps virtual to physical address

• Many methods possible, covered in the rest of this chapter

• To start, consider simple scheme where the value in the relocation register 
is added to every address generated by a user process at the time it is sent 
to memory
• Base register now called relocation register
• MS-DOS on Intel 80x86 used 4 relocation registers

• The user program deals with logical addresses; it never sees the real
physical addresses
• Execution-time binding occurs when reference is made to location in memory
• Logical address bound to physical addresses
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Dynamic relocation using a relocation register

Routine is not loaded until it is called

Better memory-space utilization; unused 

routine is never loaded

All routines kept on disk in relocatable load 

format

Useful when large amounts of code are 

needed to handle infrequently occurring cases

No special support from the operating system 

is required

Implemented through program design

OS can help by providing libraries to implement 

dynamic loading
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Dynamic Linking

• Static linking – system libraries and program code combined by the loader into 
the binary program image

• Dynamic linking –linking postponed until execution time

• Small piece of code, stub, used to locate the appropriate memory-resident library 
routine

• Stub replaces itself with the address of the routine, and executes the routine

• Operating system checks if routine is in processes’ memory address
• If not in address space, add to address space

• Dynamic linking is particularly useful for libraries

• System also known as shared libraries

• Consider applicability to patching system libraries
• Versioning may be needed
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Dynamic Loading
• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is never loaded

• Useful when large amounts of code are needed to handle 
infrequently occurring cases

• No special support from the operating system is required 
implemented through program design
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Overlays
• Keep in memory only those instructions and data that are needed 

at any given time

• Needed when process is larger than amount of memory allocated 
to it

• Implemented by user, no special support needed from operating 
system, programming design of overlay structure is complex
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Swapping

• A process can be swapped temporarily out of memory to a backing store, 
and then brought back into memory for continued execution
• Total physical memory space of processes can exceed physical memory

• Backing store – fast disk large enough to accommodate copies of all 
memory images for all users; must provide direct access to these memory 
images

• Roll out, roll in – swapping variant used for priority-based scheduling 
algorithms; lower-priority process is swapped out so higher-priority 
process can be loaded and executed

• Major part of swap time is transfer time; total transfer time is directly 
proportional to the amount of memory swapped

• System maintains a ready queue of ready-to-run processes which have 
memory images on disk
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Swapping (Cont.)

• Does the swapped out process need to swap back in to same physical 
addresses?

• Depends on address binding method
• Plus consider pending I/O to / from process memory space

• Modified versions of swapping are found on many systems (i.e., UNIX, 
Linux, and Windows)
• Swapping normally disabled

• Started if more than threshold amount of memory allocated

• Disabled again once memory demand reduced below threshold
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Schematic View of Swapping
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Context Switch Time including Swapping

• If next processes to be put on CPU is not in memory, need to swap out a 
process and swap in target process

• Context switch time can then be very high

• 100MB process swapping to hard disk with transfer rate of 50MB/sec
• Swap out time of 2000 ms
• Plus swap in of same sized process
• Total context switch swapping component time of 4000ms (4 seconds)

• Can reduce if reduce size of memory swapped – by knowing how much 
memory really being used
• System calls to inform OS of memory use via request_memory() and 
release_memory()
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Context Switch Time and Swapping (Cont.)

• Other constraints as well on swapping
• Pending I/O – can’t swap out as I/O would occur to wrong process

• Or always transfer I/O to kernel space, then to I/O device
• Known as double buffering, adds overhead

• Standard swapping not used in modern operating systems
• But modified version common

• Swap only when free memory extremely low
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Swapping on Mobile Systems

• Not typically supported
• Flash memory based

• Small amount of space
• Limited number of write cycles
• Poor throughput between flash memory and CPU on mobile platform

• Instead use other methods to free memory if low
• iOS asks apps to voluntarily relinquish allocated memory

• Read-only data thrown out and reloaded from flash if needed
• Failure to free can result in termination

• Android terminates apps if low free memory, but first writes application state
to flash for fast restart

• Both OSes support paging as discussed below
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Contiguous Allocation

• Main memory must support both OS and user processes

• Limited resource, must allocate efficiently

• Contiguous allocation is one early method

• Main memory usually into two partitions:
• Resident operating system, usually held in low memory with interrupt vector

• User processes then held in high memory

• Each process contained in single contiguous section of memory
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Contiguous Allocation (Cont.)

• Relocation registers used to protect user processes from each other, 
and from changing operating-system code and data
• Base register contains value of smallest physical address

• Limit register contains range of logical addresses – each logical address must 
be less than the limit register 

• MMU maps logical address dynamically

• Can then allow actions such as kernel code being transient and kernel 
changing size
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Hardware Support for Relocation and Limit Registers
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Multiple-partition allocation
• Degree of multiprogramming limited by number of partitions

• Variable-partition sizes for efficiency (sized to a given process’ needs)

• Hole – block of available memory; holes of various size are scattered 
throughout memory

• When a process arrives, it is allocated memory from a hole large enough to 
accommodate it

• Process exiting frees its partition, adjacent free partitions combined

• Operating system maintains information about:
a) allocated partitions    b) free partitions (hole)
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Dynamic Storage-Allocation Problem

• First-fit:  Allocate the first hole that is big enough

• Best-fit:  Allocate the smallest hole that is big enough; must search 
entire list, unless ordered by size  
• Produces the smallest leftover hole

• Worst-fit:  Allocate the largest hole; must also search entire list  
• Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization
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Fragmentation

• External Fragmentation – total memory space exists to satisfy a 
request, but it is not contiguous

• Internal Fragmentation – allocated memory may be slightly larger 
than requested memory; this size difference is memory internal to a 
partition, but not being used

• First fit analysis reveals that given N blocks allocated, 0.5 N blocks lost 
to fragmentation
• 1/3 may be unusable -> 50-percent rule
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Fragmentation (Cont.)

• Reduce external fragmentation by compaction
• Shuffle memory contents to place all free memory together in one large block

• Compaction is possible only if relocation is dynamic, and is done at execution 
time

• I/O problem
• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

• Now consider that backing store has same fragmentation problems
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Segmentation

• Memory-management scheme that supports user view of memory 

• A program is a collection of segments
• A segment is a logical unit such as:

main program

procedure 

function

method

object

local variables, global variables

common block

stack

symbol table

arrays
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User’s View of a Program
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Logical View of Segmentation
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Segmentation Architecture 

• Logical address consists of a two tuple:

<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each table entry has:
• base – contains the starting physical address where the segments reside in memory
• limit – specifies the length of the segment

• Segment-table base register (STBR) points to the segment table’s location in 
memory

• Segment-table length register (STLR) indicates number of segments used by a 
program;

segment number s is legal if s < STLR
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Segmentation Architecture (Cont.)

• Protection
• With each entry in segment table associate:

• validation bit = 0  illegal segment

• read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at 
segment level

• Since segments vary in length, memory allocation is a dynamic 
storage-allocation problem

• A segmentation example is shown in the following diagram
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Segmentation Hardware
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Example of Segmentation
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Sharing of Segments
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Paging

• Physical  address space of a process can be noncontiguous; process is allocated 
physical memory whenever the latter is available
• Avoids external fragmentation
• Avoids problem of varying sized memory chunks

• Divide physical memory into fixed-sized blocks called frames
• Size is power of 2, between 512 bytes and 16 Mbytes

• Divide logical memory into blocks of same size called pages

• Keep track of all free frames

• To run a program of size N pages, need to find N free frames and load program

• Set up a page table to translate logical to physical addresses

• Backing store likewise split into pages

• Still have Internal fragmentation
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Address Translation Scheme

• Address generated by CPU is divided into:
• Page number (p) – used as an index into a page table which contains base 

address of each page in physical memory

• Page offset (d) – combined with base address to define the physical memory 
address that is sent to the memory unit

• For given logical address space 2m and page size 2n

page number page offset

p d

m -n n
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Paging Hardware
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Paging Model of Logical and  Physical Memory
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Paging Example

n=2 and m=4   32-byte memory and 4-byte pages
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Paging (Cont.)

• Calculating internal fragmentation
• Page size = 2,048 bytes
• Process size = 72,766 bytes
• 35 pages + 1,086 bytes
• Internal fragmentation of 2,048 - 1,086 = 962 bytes
• Worst case fragmentation = 1 frame – 1 byte
• On average fragmentation = 1 / 2 frame size
• So small frame sizes desirable?
• But each page table entry takes memory to track
• Page sizes growing over time

• Solaris supports two page sizes – 8 KB and 4 MB

• Process view and physical memory now very different
• By implementation process can only access its own memory
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Free Frames

Before allocation After allocation
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Implementation of Page Table

• Page table is kept in main memory

• Page-table base register (PTBR) points to the page table

• Page-table length register (PTLR) indicates size of the page table

• In this scheme every data/instruction access requires two memory 
accesses
• One for the page table and one for the data / instruction

• The two memory access problem can be solved by the use of a special 
fast-lookup hardware cache called associative memory or translation 
look-aside buffers (TLBs)
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Implementation of Page Table (Cont.)

• Some TLBs store address-space identifiers (ASIDs) in each TLB entry –
uniquely identifies each process to provide address-space protection 
for that process
• Otherwise need to flush at every context switch

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for faster access next time
• Replacement policies must be considered

• Some entries can be wired down for permanent fast access
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Associative Memory

• Associative memory – parallel search 

• Address translation (p, d)
• If p is in associative register, get frame # out

• Otherwise get frame # from page table in memory

Page # Frame #
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Paging Hardware With TLB
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Effective Access Time

• Associative Lookup =  time unit
• Can be < 10% of memory access time

• Hit ratio = 
• Hit ratio – percentage of times that a page number is found in the associative registers; ratio 

related to number of associative registers

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
• The time for accessing TLB is often ignored as it is overlapped with memory access.

• Effective Access Time (EAT)

• Consider  = 80%,  = 20ns for TLB search, 100ns for memory access
• EAT = 0.80 x 100 + 0.20 x 200 = 120ns

• Consider more realistic hit ratio ->   = 99%,  = 20ns for TLB search, 100ns for 
memory access
• EAT = 0.99 x 100 + 0.01 x 200 = 101ns
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Memory Protection

• Memory protection implemented by associating protection bit with 
each frame to indicate if read-only or read-write access is allowed
• Can also add more bits to indicate page execute-only, and so on

• Valid-invalid bit attached to each entry in the page table:
• “valid” indicates that the associated page is in the process’ logical address 

space, and is thus a legal page

• “invalid” indicates that the page is not in the process’ logical address space

• Or use page-table length register (PTLR)

• Any violations result in a trap to the kernel
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Valid (v) or Invalid (i) Bit In A Page Table
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Shared Pages

• Shared code
• One copy of read-only (reentrant) code shared among processes (i.e., text 

editors, compilers, window systems)

• Similar to multiple threads sharing the same process space

• Also useful for interprocess communication if sharing of read-write pages is 
allowed

• Private code and data
• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear anywhere in the logical 
address space
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Shared Pages Example
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Structure of the Page Table

• Memory structures for paging can get huge using straight-forward methods
• Consider a 32-bit logical address space as on modern computers

• Page size of 4 KB (212)

• Page table would have 1 million entries (232 / 212)

• If each entry is 4 bytes -> 4 MB of physical address space / memory for page table 
alone
• That amount of memory used to cost a lot

• Don’t want to allocate that contiguously in main memory

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables
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Hierarchical Page Tables

• Break up the logical address space 
into multiple page tables

• A simple technique is a two-level page 
table

• We then page the page table
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Two-Level Page-Table Scheme
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Two-Level Paging Example

• A logical address (on 32-bit machine with 1K page size) is divided into:
• a page number consisting of 22 bits
• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided into:
• a 12-bit page number 
• a 10-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the displacement within the 
page of the inner page table

• Known as forward-mapped page table
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Address-Translation Scheme
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64-bit Logical Address Space

• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)
• Then page table has 252 entries
• If two level scheme, inner page tables could be 210 4-byte entries
• Address would look like

• Outer page table has 242 entries or 244 bytes
• One solution is to add a 2nd outer page table
• But in the following example the 2nd outer page table is still 234 bytes in size

• And possibly 4 memory access to get to one physical memory location
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Three-level Paging Scheme
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Hashed Page Tables

• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table
• This page table contains a chain of elements hashing to the same location

• Each element contains (1) the virtual page number (2) the value of the 
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a match
• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables
• Similar to hashed but each entry refers to several pages (such as 16) rather than 1
• Especially useful for sparse address spaces (where memory references are non-

contiguous and scattered) 
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Hashed Page Table
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Inverted Page Table

• Rather than each process having a page table and keeping track of all 
possible logical pages, track all physical pages

• One entry for each real page of memory
• Entry consists of the virtual address of the page stored in that real memory 

location, with information about the process that owns that page
• Decreases memory needed to store each page table, but increases time 

needed to search the table when a page reference occurs
• Use hash table to limit the search to one — or at most a few — page-table 

entries
• TLB can accelerate access

• But how to implement shared memory?
• One mapping of a virtual address to the shared physical address
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Inverted Page Table Architecture
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Oracle SPARC Solaris

• Consider modern, 64-bit operating system example with tightly 
integrated HW
• Goals are efficiency, low overhead

• Based on hashing, but more complex

• Two hash tables
• One kernel and one for all user processes
• Each maps memory addresses from virtual to physical memory
• Each entry represents a contiguous area of mapped virtual memory,

• More efficient than having a separate hash-table entry for each page

• Each entry has  base address and  span (indicating the number of pages the 
entry represents)
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Oracle SPARC Solaris (Cont.)

• TLB holds translation table entries (TTEs) for fast hardware lookups
• A cache of TTEs reside in a translation storage buffer (TSB)

• Includes an entry per recently accessed page

• Virtual address reference causes TLB search 
• If miss, hardware walks the in-memory TSB looking for the TTE corresponding 

to the address
• If match found, the CPU copies the TSB entry into the TLB and translation completes

• If no match found, kernel interrupted to search the hash table
• The kernel then creates a TTE from the appropriate hash table and stores it in the TSB, 

Interrupt handler returns control to the MMU, which completes the address translation. 
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Example: The Intel 32 and 64-bit Architectures

• Dominant industry chips

• Pentium CPUs are 32-bit and called IA-32 architecture

• Current Intel CPUs are 64-bit and called IA-64 architecture

• Many variations in the chips, cover the main ideas here
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Example: The Intel IA-32 Architecture

• Supports both segmentation and segmentation with paging
• Each segment can be 4 GB

• Up to 16 K segments per process

• Divided into two partitions
• First partition of up to 8 K segments are private to process (kept in local descriptor table 

(LDT))

• Second partition of up to 8K segments shared among all processes (kept in global 
descriptor table (GDT))
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Example: The Intel IA-32 Architecture (Cont.)

• CPU generates logical address
• Selector given to segmentation unit

• Which produces linear addresses 

• Linear address given to paging unit
• Which generates physical address in main memory

• Paging units form equivalent of MMU

• Pages sizes can be 4 KB or 4 MB
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Logical to Physical Address Translation in IA-32
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Intel IA-32 Segmentation
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Intel IA-32 Paging Architecture
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Intel IA-32 Page Address Extensions

32-bit address limits led Intel to create page address extension (PAE), 

allowing 32-bit apps access to more than 4GB of memory space

Paging went to a 3-level scheme

Top two bits refer to a page directory pointer table

Page-directory and page-table entries moved to 64-bits in size

Net effect is increasing address space to 36 bits – 64GB of physical 

memory
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Intel x86-64

Current generation Intel x86 architecture

64 bits is ginormous (> 16 exabytes)

In practice only implement 48 bit addressing

Page sizes of 4 KB, 2 MB, 1 GB

Four levels of paging hierarchy

Can also use PAE so virtual addresses are 48 bits and physical 

addresses are 52 bits
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Example: ARM Architecture

Dominant mobile platform chip (Apple iOS and Google 

Android devices for example)

Modern, energy efficient, 32-bit CPU

4 KB and 16 KB pages

1 MB and 16 MB pages (termed sections)

One-level paging for sections, two-level for smaller 

pages

Two levels of TLBs

Outer level has two micro TLBs (one data, one 

instruction)

Inner is single main TLB

First inner is checked, on miss outers are 

checked, and on miss page table walk 

performed by CPU

outer page inner page offset

4-KB

or

16-KB

page

1-MB

or

16-MB 

section

32 bits
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