Lecture 08/29/17

Lecturer: Xiaodi Wu

Reading Assignment: Course Website; [AB] Chap 0.
Welcome to CMSC 652: Complexity Theory
Welcome to CMSC 652: Complexity Theory

&

Welcome to the new academic year!
Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)
Teaching Team

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuIICS)
- **NO Quantum** covered in the lecture. Check CMSC 858K by Andrew Childs. You are welcome to ask quantum questions!
Teaching Team

Instructor

▶ Instructor: Prof. Xiaodi Wu
▶ Contact: AVW 3257, xwu@cs.umd.edu
▶ Research: Quantum Information and Computation
▶ Joint Center for Quantum Information and Computer Science (QuICs)
▶ **NO Quantum** covered in the lecture. Check CMSC 858K by Andrew Childs. You are **welcome** to ask quantum questions!
▶ CMSC 457: Introduction to Quantum Computation (Spring 18)
Teaching Team

Instructor

► Instructor: Prof. Xiaodi Wu
► Contact: AVW 3257, xwu@cs.umd.edu
► Research: Quantum Information and Computation
► Joint Center for Quantum Information and Computer Science (QuICs)
► **NO Quantum** covered in the lecture. Check CMSC 858K by Andrew Childs. You are **welcome** to ask quantum questions!
► CMSC 457: Introduction to Quantum Computation (Spring 18)

TA

► Sheng Yang, styang@cs.umd.edu
Question

What is this course? Why are you here?
Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?
Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.
Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in complexity theory that you can think of? what is your expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory of computation.
- complexity theory studies the power of computation in terms of consumed computational resources.
Question

What is this course? Why are you here?

- a theory course; a required course?; any keywords in
 complexity theory that you can think of? what is your
 expectation?

CMSC 652 is about:

- the study of the computation itself in an abstract way: theory
 of computation.
- complexity theory studies the power of computation in terms
 of consumed computational resources.
- it can be deemed as the opposite side of algorithms.
Theoretical Computer Science

Computer Science

Mathematics

Statistics

Social Science

Core ToC

Comp. Comp.

Structure, Insights, Interconnectivity,…

Property testing

Verification

Distributed

Lower bounds

Communication Complexity

Quantum Computing

Crypto

Learning

AGT

Logic

Randomness

Mathematics
Intuitive questions to address

▶ Are algorithms that are given more time always able to solve more problems?
Complexity Theory

Intuitive questions to address

► Are algorithms that are given more time always able to solve more problems?
► Is verifying solutions to problems easier than coming up with such solutions?
Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
Complexity Theory

Intuitive questions to address

▶ Are algorithms that are given more time always able to solve more problems?
▶ Is verifying solutions to problems easier than coming up with such solutions?
▶ Can tossing coins help us compute faster?
▶ Can we define randomness?
▶ Is finding approximate answers easier than finding exact answers?
▶ Can we prove that some interesting problems cannot be solved efficiently?
▶ Can you verify that an algorithm solves a problem without solving it yourself?
Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?
- Can we prove that some interesting problems cannot be solved efficiently?
- Can you verify that an algorithm solves a problem without solving it yourself?
Complexity Theory

Intuitive questions to address

- Are algorithms that are given more time always able to solve more problems?
- Is verifying solutions to problems easier than coming up with such solutions?
- Can tossing coins help us compute faster?
- Can we define randomness?
- Is finding approximate answers easier than finding exact answers?
- Can we prove that some interesting problems cannot be solved efficiently?
Intuitive questions to address

▶ Are algorithms that are given more time always able to solve more problems?
▶ Is verifying solutions to problems easier than coming up with such solutions?
▶ Can tossing coins help us compute faster?
▶ Can we define randomness?
▶ Is finding approximate answers easier than finding exact answers?
▶ Can we prove that some interesting problems cannot be solved efficiently?
▶ Can you verify that an algorithm solves a problem without solving it yourself?
Complexity Theory: Methodology

Complexity Theory

The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness.
Complexity Theory: Methodology

Complexity Theory

The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.
Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:
- Abstraction and modeling of the computation.
Complexity Theory: Methodology

Complexity Theory

The power of computation in terms of **consumed computational resources** such as *time, memory, communication, number of rounds of communication, and randomness*. **quantum**.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
Complexity Theory: Methodology

Complexity Theory

The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
- Measure of the consumed resources.
Complexity Theory: Methodology

Complexity Theory
The power of computation in terms of consumed computational resources such as time, memory, communication, number of rounds of communication, and randomness. quantum.

Necessary Steps:

- Abstraction and modeling of the computation.
- Modelling of different computational resources.
- Measure of the consumed resources.
- Comparison of the power of computation.
Methodology

We address all these questions using **rigorous mathematical** tools.
Complexity Theory: Methodology

Methodology
We address all these questions using rigorous mathematical tools.

Expectation
▶ You have ”mathematical maturity” (e.g., are comfortable with proofs and abstract reasoning).
Complexity Theory: Methodology

Methodology
We address all these questions using rigorous mathematical tools.

Expectation
- You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).
- You are interested in the material.
Complexity Theory: Methodology

Methodology
We address all these questions using **rigorous mathematical** tools.

Expectation

- You have "mathematical maturity" (e.g., are comfortable with proofs and abstract reasoning).
- You are interested in the material.
- You are willing to spend time outside of class in order to better understand the material presented in class.
Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.
Complexity Theory: Teaching Philosophy

- Emphasize more on the conceptual messages!
- Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.
- We will go through a few techniques as well! Emphasize will be on probabilistic tools.
Emphasize more on the conceptual messages!

Assignments and exams tend to test more on the fundamentals rather than the tricks or the cleverness.

We will go through a few techniques as well! Emphasize will be on probabilistic tools.

What if I want to do research in this direction ...
Further references will be provided! You are always welcome to ask questions!
More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 pm - 3:30 pm at AVW 3164.
More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 pm - 3:30 pm at AVW 3164.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 pm - 3:30 pm at AVW 3164.

Websites

- **Course website**: syllabus, reading assignments, handouts, and so on. Check *Frequently!!*.
- **Piazza**: announcements, discussion forum, ask for helps.
More logistics

Office Hours

- Wu: Tu Th 3:30 pm - 4:30 pm at AVW 3257, or by appointments.
- Yang: W 2:30 pm - 3:30 pm at AVW 3164.

Websites

- **Course website**: syllabus, reading assignments, handouts, and so on. Check **Frequently!!**.
- **Piazza**: announcements, discussion forum, ask for helps.
- **ELMS**: distribute and submit assignments, grades, solutions.
Languages

\(L_f = \{ x \in \{0, 1\}^* : f(x) = 1 \} \) for languages or decision problems.

Example

\[
\text{INDSET} = \{ < G, k > : \exists S \subset V(G) \text{ s.t. } |S| \geq k \\
\text{and } \forall u, v \in S, \overline{uv} \notin E(G) \}.
\]
3.1 Asymptotic notation

- **(b)** If there exist positive constants n_0, c_1, and c_2 such that at and to the right of n_0, the value of $f(n)$ always lies between $c_1 g(n)$ and $c_2 g(n)$ inclusive.

- **(c)** $f(n)$ belongs to the set $\Theta(g(n))$ if there exist positive constants c_1 and c_2 such that it can be "sandwiched" between $c_1 g(n)$ and $c_2 g(n)$, for sufficiently large n. Because $\Theta(g(n))$ is a set, we could write "$f(n) \in \Theta(g(n))" to indicate that $f(n)$ is a member of $\Theta(g(n))$. Instead, we will usually write "$f(n) = \Theta(g(n))" to express the same notion. You might be confused because we abuse equality in this way, but we shall see later in this section that doing so has its advantages.

- For all values of n at and to the right of n_0, the function $f(n)$ lies at or above $c_1 g(n)$ and at or below $c_2 g(n)$. In other words, for all n / n_0, the function $f(n)$ is equal to $g(n)$ to within a constant factor. We say that $g(n)$ is an asymptotically tight bound for $f(n)$.

- The definition of $\Theta(g(n))$ requires that every member $f(n) \in \Theta(g(n))$ be asymptotically nonnegative, that is, that $f(n)$ be nonnegative whenever n is sufficiently large. (An asymptotically positive function is one that is positive for all sufficiently large n.) Consequently, the function $g(n)$ itself must be asymptotically nonnegative, or else the set $\Theta(g(n))$ is empty. We shall therefore assume that every function used within Θ-notation is asymptotically nonnegative. This assumption holds for the other asymptotic notations defined in this chapter as well.