Type Qualifiers

Slides due to Jeff Foster
University of Maryland

Joint work with Alex Aiken, Rob Johnson, John Kodumal, Tachio Terauchi, and David Wagner
Type Qualifiers: Lightweight Specifications

- Extend standard type systems (C, Java, ML)
 - Programmers already use types
 - Programmers understand types
 - Get programmers to write down a little more...

const int
ptr(tainted char)
kernelptr(char) → char

ANSI C
Format-string vulnerabilities
User/kernel vulnerabilities
Application: Format String Vulnerabilities

• I/O functions in C use format strings

  ```c
  printf("Hello!");  // Hello!
  printf("Hello, %s!", name);  // Hello, name!
  ```

• Instead of

  ```c
  printf("%s", name);
  ```

 Why not

  ```c
  printf(name);
  ```
Format String Attacks

- Adversary-controlled format specifier

 \[
 \text{name := <data-from-network>}
 \]

 \[
 \text{printf(name); /* Oops */}
 \]

 - Attacker sets name = “%s%s%s” to crash program
 - Attacker sets name = “...%n...” to write to memory
 - Yields (often remote root) exploits

- These bugs still occur in the wild
Using Tainted and Untainted

• Add qualifier annotations

\[
\begin{align*}
\text{int } \text{printf(untainted char *fmt, ...)} \\
\text{tainted char *getenv(const char *)}
\end{align*}
\]

\textit{tainted} = may be controlled by adversary
\textit{untainted} = must not be controlled by adversary

Taintedness is an \textit{integrity} property
- Dual to confidentiality, as per last lecture
- The technique we describe applies to \textit{confidentiality} too
Subtyping

void f(tainted int);
untainted int a;
f(a);

OK
f accepts tainted or untainted data
untainted ≤ tainted

void g(untainted int);
tainted int b;
g(b);

Error
g accepts only untainted data
tainted ∉ untainted
untainted < tainted
The Plan

• The Nice Theory

• Polymorphism

• The Icky Stuff in C
Type Qualifiers for MinML

• We’ll add type qualifiers to MinML
 - Same approach works for other languages (like C)

• Standard type systems define types as
 - \(t ::= c_0(t, \ldots, t) | \ldots | c_n(t, \ldots, t) \)
 • Where \(\Sigma = c_0 \ldots c_n \) is a set of type constructors

• Recall the types of MinML
 - \(t ::= \text{int} | \text{bool} | t \to t \)
 • Here \(\Sigma = \text{int}, \text{bool}, \to \) (written infix)
Type Qualifiers for MinML (cont’d)

• Let \(Q \) be the set of type qualifiers
 - Assumed to be chosen in advance and fixed
 - E.g., \(Q = \{ \text{tainted}, \text{untainted} \} \)
• Then the qualified types are just
 - \(q_t ::= Q \ s \)
 - \(s ::= c_0(q_t, \ldots, q_t) \mid \ldots \mid c_n(q_t, \ldots, q_t) \)
 - Allow a type qualifier to appear on each type constructor
• For MinML
 - \(q_t ::= \text{int}^Q \mid \text{bool}^Q \mid q_t \rightarrow^Q q_t \)
Abstract Syntax of MinML with Qualifiers

\[e ::= x \mid n \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e \text{ else } e \mid \text{fun } f^Q(x:qt):qt = e \mid e \ e \mid \text{annot}(Q, e) \mid \text{check}(Q, e) \]

- \text{annot}(Q, e) = “expression } e \text{ has qualifier } Q”
- \text{check}(Q, e) = “fail if } e \text{ does not have qualifier } Q”
 - Checks only the top-level qualifier

• Examples:
 - \text{fun fread (x:qt):int}^{\text{tainted}} = ...\text{annot}({\text{tainted}}, 42)
 - \text{fun printf (x:qt):qt’ = check}({\text{untainted}}, x), ...
Typing Rules: Qualifier Introduction

- Newly-constructed values have “bare” types

 $G \vdash n : \text{int}$

 $G \vdash \text{true} : \text{bool}$

 $G \vdash \text{false} : \text{bool}$

- Annotation adds an outermost qualifier

 $G \vdash e_1 : s$

 $G \vdash \text{annot}(Q, e) : Q \ s$
Typing Rules: Qualifier Elimination

• By default, discard qualifier at destructors

\[
G \vdash e_1 : \text{bool}^Q \quad G \vdash e_2 : q^t \quad G \vdash e_3 : q^t
\]
\[
G \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : q^t
\]

• Use `check()` if you want to do a test

\[
G \vdash e_1 : Q \ s
\]
\[
G \vdash \text{check}(Q, e) : Q \ s
\]
Subtyping

• Our example used subtyping
 - If anyone expecting a T can be given an S instead, then S is a subtype of T.
 - Allows untainted to be passed to tainted positions
 - I.e., $\text{check(tainted, annot(untainted, 42))}$ should typecheck

• How do we add that to our system?
Partial Orders

- Qualifiers Q come with a partial order \leq:
 - $q \leq q$ (reflexive)
 - $q \leq p, p \leq q \Rightarrow q = p$ (anti-symmetric)
 - $q \leq p, p \leq r \Rightarrow q \leq r$ (transitive)

- Qualifiers introduce subtyping

- In our example:
 - untainted $<\text{ tainted}$
Extending the Qualifier Order to Types

- Add one new rule subsumption to type system

\[
\frac{Q \leq Q'}{bool^Q \leq bool^{Q'}} \quad \frac{Q \leq Q'}{int^Q \leq int^{Q'}}
\]

- Means: If any position requires an expression of type \(qt' \), it is safe to provide it a subtype \(qt \).
Use of Subsumption

|-- 42 : int

|-- annot(untainted, 42) : untainted int untainted \(\leq \) tainted

|-- annot(untainted, 42) : tainted int

|-- check(tainted, annot(untainted, 42)) : tainted int
Subtyping on Function Types

• What about function types?

\[qt_1 \rightarrow^Q qt_2 \leq qt_1' \rightarrow^Q' qt_2' \]

• Recall: \(S \) is a subtype of \(T \) if an \(S \) can be used anywhere a \(T \) is expected
 - When can we replace a call “\(f \ x \)” with a call “\(g \ x \)”?
Replacing “f x” by “g x”

• When is $qt_1' \rightarrow^Q qt_2' \leq qt_1 \rightarrow^Q qt_2$?

• Return type:
 - We are expecting qt_2 (f’ s return type)
 - So we can only return at most qt_2
 - $qt_2' \leq qt_2$

• Example: A function that returns tainted can be replaced with one that returns untainted
Replacing “f x” by “g x” (cont’d)

• When is \(q_{t1}' \xrightarrow{Q'} q_{t2}' \leq q_{t1} \xrightarrow{Q} q_{t2} \)?

• Argument type:
 - We are supposed to accept \(q_{t1} \) (f’s argument type)
 - So we must accept at least \(q_{t1} \)
 - \(q_{t1} \leq q_{t1}' \)

• Example: A function that accepts untainted can be replaced with one that accepts tainted
Subtyping on Function Types

\[qt_1' \leq qt_1 \quad qt_2 \leq qt_2' \quad Q \leq Q' \]
\[qt_1 \rightarrow^Q qt_2 \leq qt_1' \rightarrow^Q qt_2' \]

- We say that \(\rightarrow \) is
 - Covariant in the range (subtyping dir the same)
 - Contravariant in the domain (subtyping dir flips)
Dynamic Semantics with Qualifiers

- Operational semantics tags values with qualifiers
 - $v ::= x \mid n^Q \mid true^Q \mid false^Q$
 - $fun f^Q (x : qt1) : qt2 = e$

- Evaluation rules same as before, carrying the qualifiers along, e.g.,

\[
\text{if } true^Q \text{ then } e1 \text{ else } e2 \rightarrow e1
\]
Dynamic Semantics with Qualifiers (cont’d)

• One new rule checks a qualifier:

\[
\begin{align*}
Q' & \leq Q \\
\text{check}(Q, v^{Q'}) & \rightarrow v
\end{align*}
\]

- Evaluation at a check can continue only if the qualifier matches what is expected
 - Otherwise the program gets stuck
- (Also need rule to evaluate under a check)

• Goal: don’t do any checking at run-time
 - Instead, prove that all checks will succeed
Soundness

- We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don’t get stuck

- Proof: Exercise
 - See if you can adapt proofs to this system
 - (Not too much work; really just need to show that check doesn’t get stuck)
Updateable References

• **Our MinML language is missing side-effects**
 - There’s no way to write to memory
 - Recall that this doesn’t limit expressiveness
 • But side-effects sure are handy
Language Extension

• We’ll add ML-style references
 - e ::= ... | ref_Q e | !e | e := e
 - ref_Q e -- Allocate memory and set its contents to e
 - Returns memory location
 - Q is qualifier on pointer (not on contents)
 - !e -- Return the contents of memory location e
 - e1 := e2 -- Update e1’s contents to contain e2

• Things to notice
 • No null pointers (memory always initialized)
 • No mutable local variables (only pointers to heap allowed)
Static Semantics

- Extend type language with references:
 - qt ::= ... | ref^Q qt

 Note: In ML the ref appears on the right

\[
\begin{align*}
 G |-- e : qt \\
 \hline
 G |-- ref^Q e : ref^Q qt
\end{align*}
\]

\[
\begin{align*}
 G |-- e : ref^Q qt \\
 \hline
 G |-- !e : qt
\end{align*}
\]

\[
\begin{align*}
 G |-- e1 : ref^Q qt \\
 G |-- e2 : qt \\
 \hline
 G |-- e1 := e2 : qt
\end{align*}
\]
Subtyping References

- The **wrong** rule for subtyping references is

\[
\frac{Q \leq Q' \quad qt \leq qt'}{\text{ref}^Q qt \leq \text{ref}^{Q'} qt'}
\]

- **Counterexample**

```plaintext
let x : ref^Q untainted int = ref 0^{untainted} in
let y : ref^Q tainted int = x in
y := 3^{tainted};
check(untainted, !x)
```

```plaintext
ok if ref t int \leq ref ut int
```

```plaintext
oops!
```
You’ve Got Aliasing!

- We have multiple names for the same memory location
 - But they have different types
 - And we can write into memory at different types
Solution #1: Java’s Approach

• Java uses this subtyping rule
 - If S is a subclass of T, then $S[]$ is a subclass of $T[]$

• Counterexample:
 - Foo[] $a = \text{new Foo}[5]$;
 - Object[] $b = a$;
 - $b[0] = \text{new Object}();$ // forbidden at runtime
 - $a[0].\text{foo}();$ // ...so this can’t happen
Solution #2: Purely Static Approach

- Reason from rules for functions
 - A reference is like an object with two methods:
 * `get : unit → qt`
 * `set : qt → unit`
 - Notice that `qt` occurs both co- and contravariantly
- The right rule:

\[
\begin{align*}
Q \leq Q' & \quad qt \leq qt' \quad qt' \leq qt \\
\text{ref}^Q qt \leq \text{ref}^{Q'} qt' & \quad \text{or} \quad Q \leq Q' \quad qt = qt' \\
\text{ref}^Q qt \leq \text{ref}^{Q'} qt' &
\end{align*}
\]
Challenge Problem: Soundness

- We want to prove
 - Preservation: Evaluation preserves types
 - Progress: Well-typed programs don’t get stuck

- Can you prove it with updateable references?
 - Hint: You’ll need a stronger induction hypothesis
 - You’ll need to reason about types in the store
 - E.g., so that if you retrieve a value out of the store, you know what type it has
Type Qualifier Inference

• Recall our motivating example
 - We gave a legacy C program that had *no information* about qualifiers
 - We added signatures *only* for the standard library functions
 - Then we checked whether there were any contradictions

• This requires *type qualifier inference*
Type Qualifier Inference Statement

• Given a program with
 - Qualifier annotations
 - Some qualifier checks
 - And no other information about qualifiers
• Does there exist a valid typing of the program?
 - I.e., can we produce a legal typing derivation?
• We want an algorithm to solve this problem
First Problem: Subsumption Rule

\(G |-- e : qt \quad qt \leq qt' \)

\(G |-- e : qt' \)

• We’re allowed to apply this rule at any time
 - Makes it hard to develop a deterministic algorithm
 - Type checking is not syntax driven

• Fortunately, we don’t have that many choices
 - For each expression \(e \), we need to decide
 • Do we apply the “regular” rule for \(e \)?
 • Or do we apply subsumption (how many times)?
Getting Rid of Subsumption

• Lemma: Multiple sequential uses of subsumption can be collapsed into a single use
 – Proof: Transitivity of \leq

• So now we need only apply subsumption once after each expression
Getting Rid of Subsumption (cont’d)

• We drop the separate subsumption rule
 - Incorporate it directly into the other rules

\[
\begin{align*}
G | -- e1 : qt' & \rightarrow^Q qt'' & G | -- e2 : qt \\
qt1 & \leq qt' & Q' & \leq Q & qt'' & \leq qt2 & qt & \leq qt1 \\
\hline
G | -- e1 : qt1 & \rightarrow^Q qt2 & G | -- e2 : qt1 \\
\hline
G | -- e1 e2 : qt2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

• 1. Fold e_2 subsumption into rule

\[
G \vdash e_1 : q_t' \rightarrow^Q q_t'' \\
q_{t1} \leq q_{t'} \quad Q' \leq Q \quad q_{t''} \leq q_{t2} \\
\overline{G \vdash e_1 : q_{t1} \rightarrow^Q q_{t2} \quad G \vdash e_2 : q_t \quad q_t \leq q_{t1}} \\
G \vdash e_1 e_2 : q_{t2}
\]
Getting Rid of Subsumption (cont’d)

• 2. Fold e_1 subsumption into rule

\[
q_1t \leq q \quad Q' \leq Q \quad q_2t'' \leq q_2t
\]

\[
\frac{G | e_1 \vdash q \rightarrow Q' \quad q_3t''}{G \quad e_2 \vdash q \quad q \leq q_1t}
\]

\[
G \quad e_1 \quad e_2 \vdash q_2t
\]
Getting Rid of Subsumption (cont’d)

• 3. We don’t use Q, so remove that constraint

\[
\begin{align*}
qt_1 & \leq qt' & qt'' & \leq qt_2 \\
G |-- e_1 : qt' & \to^Q qt'' & G |-- e_2 : qt & qt & \leq qt_1 \\
G |-- e_1 \ e_2 : qt_2
\end{align*}
\]
Getting Rid of Subsumption (cont’d)

• 4. Apply transitivity of \leq
 - Remove intermediate q_t1

\[
q_{t''} \leq q_{t2}
\]

\[
G \vdash e1 : q_t' \rightarrow^Q q_{t''} \quad G \vdash e2 : q_t \quad q_t \leq q_{t'}
\]

\[
G \vdash e1 \cdot e2 : q_{t2}
\]
Getting Rid of Subsumption (cont’d)

• 5. We’re going to apply subsumption afterward, so no need to weaken q^t''

$$G \vdash e1 : q^t' \rightarrow^Q q^t'' \quad G \vdash e2 : q^t \quad q^t \leq q^t'$$

$$G \vdash e1 \ e2 : q^t''$$
Getting Rid of Subsumption (cont’d)

• We similarly adjust the other rules
 - We’re left with a purely syntax-directed system

• Good! Now we’re half-way to an algorithm
Second Problem: Assumptions

• Let’s take a look at the rule for functions:

\[G, f : q_t1 \rightarrow^Q q_t2, x : q_t1 \vdash e : q_t2' \quad q_t2' \leq q_t2 \]

\[G \vdash \text{fun } f^Q (x : q_t1) : q_t2 = e : q_t1 \rightarrow^Q q_t2 \]

• There’s a problem with applying this rule
 - We’re assuming that we’re given the argument type \(q_t1 \) and the result type \(q_t2 \)
 - But in the problem statement, we said we only have annotations and checks
Unknowns in Qualifier Inference

- We’ve got regular type annotations for functions
 - (We could even get away without these...)

\[G, f: ? \rightarrow^Q ?, x: ? \mid -- e : q_{t2}' \quad q_{t2}' \leq q_{t2} \]
\[G \mid -- \text{fun } f^Q (x:t1):t2 = e : q_{t1} \rightarrow^Q q_{t2} \]

- How do we pick the qualifiers for \(f \)?
 - We generate fresh, unknown qualifier variables and then solve for them
Adding Fresh Qualifiers

• We’ll add qualifier variables a, b, c, ... to our set of qualifiers
 - (Letters closer to p, q, r will stand for constants)

• Define fresh : t → qt as
 - fresh(int) = int^a
 - fresh(bool) = bool^a
 - fresh(ref t) = ref^a fresh(t)
 - fresh(t1→t2) = fresh(t1) →^a fresh(t2)
 • Where a is fresh
Rule for Functions

\[qt_1 = \text{fresh}(t_1) \quad qt_2 = \text{fresh}(t_2) \]

\[G, f : qt_1 \rightarrow^Q qt_2, x : qt_1 \mid -- \ e : qt_2' \]

\[qt_2' \leq qt_2 \]

\[G \mid -- \ \text{fun} \ f^Q (x : t_1 : t_2) = e : qt_1 \rightarrow^Q qt_2 \]
A Picture of Fresh Qualifiers

ptr(tainted char)

\[\alpha \text{ ptr} \]
\[\text{tainted char} \]

int \rightarrow \text{user} \text{ ptr(int)}

\[\alpha_0 \rightarrow \]
\[\alpha_1 \text{ int} \]
\[\alpha_2 \text{ ptr} \]

\[\text{user int} \]
Where Are We?

• A syntax-directed system
 - For each expression, clear which rule to apply
• Constant qualifiers
• Variable qualifiers
 - Want to find a valid assignment to constant qualifiers
• Constraints \(\text{qt} \leq \text{qt}' \) and \(Q \leq Q' \)
 - These restrict our use of qualifiers
 - These will limit solutions for qualifier variables
Qualifier Inference Algorithm

• 1. Apply syntax-directed type inference rules
 - This generates fresh unknowns and constraints among the unknowns

• 2. Solve the constraints
 - Either compute a solution
 - Or fail, if there is no solution
 • Implies the program has a type error
 • Implies the program may have a security vulnerability
Solving Constraints: Step 1

- Constraints of the form $q_t \leq q_{t}'$ and $Q \leq Q'$
 - $q_t ::= \text{int}^Q | \text{bool}^Q | q_t \rightarrow^Q q_t | \text{ref}^Q q_t$

- Solve by simplifying
 - Can read solution off of simplified constraints

- We’ll present algorithm as a rewrite system
 - $S \Longrightarrow S'$ means constraints S rewrite to (simpler) constraints S'
 - Rules are derived from standard subtyping rules
Solving Constraints: Step 1

- \(S + \{ \text{int}^Q \leq \text{int}^{Q'} \} \Rightarrow S + \{ Q \leq Q' \} \)
- \(S + \{ \text{bool}^Q \leq \text{bool}^{Q'} \} \Rightarrow S + \{ Q \leq Q' \} \)
- \(S + \{ q_{t1} \rightarrow^Q q_{t2} \leq q_{t1}' \rightarrow^{Q'} q_{t2}' \} \Rightarrow \)
 \(S + \{ q_{t1}' \leq q_{t1} \} + \{ q_{t2} \leq q_{t2}' \} + \{ Q \leq Q' \} \)
- \(S + \{ \text{ref}^Q q_{t1} \leq \text{ref}^{Q'} q_{t2} \} \Rightarrow \)
 \(S + \{ q_{t1} \leq q_{t2} \} + \{ q_{t2} \leq q_{t1} \} + \{ Q \leq Q' \} \)
- \(S + \{ \text{mismatched constructors} \} \Rightarrow \text{error} \)
 - Can’t happen if program correct w.r.t. std types
Solving Constraints: Step 2

- Our type system is called a *structural subtyping system*
 - If $qt \leq qt'$, then qt and qt' have the same shape
- When we’re done with step 1, we’re left with constraints of the form $Q \leq Q'$
 - Where either of Q, Q' may be an unknown
 - This is called an *atomic subtyping system*
 - That’s because qualifiers don’t have any “structure”
Constraint Generation

\[\text{ptr(int) } f(x : \text{int}) = \{ \ldots \} \quad y := f(z) \]
Constraints as Graphs

\[\begin{align*}
\alpha_0 & \rightarrow \alpha_1 \rightarrow \alpha_2 \rightarrow \alpha_3 \rightarrow \alpha_5 \\
\alpha_2 & \rightarrow \alpha_9 \\
\alpha_3 & \rightarrow \alpha_4 \rightarrow \alpha_7 \\
\alpha_4 & \rightarrow \alpha_6 \rightarrow \alpha_8 \\
\alpha_6 & \rightarrow \alpha_7 \\
\alpha_7 & \rightarrow \text{untainted} \\
\alpha_6 & \leq \alpha_1 \\
\alpha_2 & \leq \alpha_4 \\
\alpha_3 & = \alpha_5 \\
\alpha_8 & \rightarrow \text{tainted}
\end{align*}\]
Some Bad News

• Solving atomic subtyping constraints is NP-hard in the general case

• The problem comes up with some really weird partial orders

\[
\begin{array}{ccc}
p & q \\
r & s \\
\end{array}
\]
But that’s OK

• These partial orders don’t seem to come up in practice

• Most qualifier partial orders have one of two desirable properties:
 – They either always have least upper bounds or greatest lower bounds for any pair of qualifiers

• If Q is a lattice, it turns out we can use a really simple algorithm to check satisfiability of constraints over Q
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?
Satisfiability via Graph Reachability

Is there an inconsistent path through the graph?

\[\alpha_0 \rightarrow \alpha_2 \rightarrow \alpha_9 \rightarrow \alpha_5 \rightarrow \alpha_6 \rightarrow \alpha_7 \rightarrow \alpha_8 \]

untainted

\[\alpha_6 \leq \alpha_1 \]
\[\alpha_2 \leq \alpha_4 \]
\[\alpha_3 = \alpha_5 \]
\[\vdots \]

\[\alpha_7 \rightarrow \alpha_8 \]

tainted
Satisfiability via Graph Reachability

YES: tainted $\leq \alpha_6 \leq \alpha_1 \leq \alpha_3 \leq \alpha_5 \leq \alpha_7 \leq$ untainted

Diagram showing directed paths from tainted to untainted through various nodes $\alpha_0, \alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8$.
Satisfiability in Linear Time

• Initial program of size n
 - Fixed set of qualifiers tainted, untainted, ...

• Constraint generation yields $O(n)$ constraints
 - Recursive abstract syntax tree walk

• Graph reachability takes $O(n)$ time
 - Works for semi-lattices, discrete p.o., products
Limitations of Subtyping

• Subtyping gives us a kind of polymorphism
 - A polymorphic type represents multiple types
 - In a subtyping system, q^\dagger represents q^\dagger and all of q^\dagger’s subtypes

• As we saw, this flexibility helps make the analysis more precise
 - But it isn’t always enough...
Limitations of Subtype Polymorphism

• Consider **tainted** and **untainted** again
 - untainted ≤ tainted
• Let’s look at the identity function
 - fun id (x:int):int = x
• What qualified types can we infer for \texttt{id}?
Types for id

• **fun id (x:int):int = x** (ignoring int, qual on id)
 - **tainted → tainted**
 • Fine but untainted data passed in becomes tainted
 - **untainted → untainted**
 • Fine but can’t pass in tainted data
 - **untainted → tainted**
 • Not too useful
 - **tainted → untainted**
 • Impossible
Function Calls and Context-Sensitivity

char *strdup(char *str) {
 // return a copy of str
}
char *a = strdup(tainted_string);
char *b = strdup(untainted_string);

- All calls to strdup conflated
 - Monomorphic or context-insensitive
The Problem Restated: Unrealizable Paths

- No execution can exhibit that particular call/return sequence
Only Propagate Along Realizable Paths

- Add edge labels for calls and returns
 - Only propagate along valid paths whose returns balance calls
CFL Reachability

- We’re trying to find paths through the graph whose edges are a language in some grammar
 - Called the *CFL Reachability* problem
 - Computable in cubic time
CFL Reachability Grammar

\[S ::= P \, N \]
\[P ::= M \, P \]
\[\quad | \quad)i \, P \quad \text{for any } i \]
\[\quad | \quad \text{empty} \]
\[N ::= M \, N \]
\[\quad | \quad (i \, N \quad \text{for any } i \]
\[\quad | \quad \text{empty} \]
\[M ::= (i \, M)i \quad \text{for any } i \]
\[\quad | \quad M \, M \]
\[\quad | \quad d \quad \text{regular subtyping edge} \]
\[\quad | \quad \text{empty} \]

- Paths may have unmatched but not mismatched parens
Efficiency

• Constraint generation yields $O(n)$ constraints
 - Same as before
 - Important for scalability
• Context-free language reachability is $O(n^3)$
 - But a few tricks make it practical (not much slowdown in analysis times)
• For more details, see
 - Rehof + Fahndrich, POPL’01
Security via Type Qualifiers: The Icky Stuff in C
Experiment: Format String Vulnerabilities

- Analyzed 10 popular unix daemon programs
 - Annotations shared across applications
 - One annotated header file for standard libraries
 - Includes annotations for polymorphism
 - Critical to practical usability

- Found several known vulnerabilities
 - Including ones we didn’t know about

- User interface critical
Results: Format String Vulnerabilities

<table>
<thead>
<tr>
<th>Name</th>
<th>Warn</th>
<th>Bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>identd-1.0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mingetty-0.9.4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bftpd-1.0.11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>muh-2.05d</td>
<td>2</td>
<td>~2</td>
</tr>
<tr>
<td>cfengine-1.5.4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>imapd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ipopd-4.7c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mars_nwe-0.99</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>apache-1.3.12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>openssh-2.3.0p1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Experiment: User/kernel Vulnerabilities (Johnson + Wagner 04)

• In the Linux kernel, the kernel and user/mode programs share address space

- The top 1GB is reserved for the kernel
- When the kernel runs, it doesn’t need to change VM mappings

• Just enable access to top 1GB
• When kernel returns, prevent access to top 1GB
Tradeoffs of This Memory Model

• Pros:
 - Not a lot of overhead
 - Kernel has direct access to user space

• Cons:
 - Leaves the door open to attacks from untrusted users
 - A pain for programmers to put in checks
An Attack

• Suppose we add two new system calls

  ```c
  int x;
  void sys_setint(int *p) { memcpy(&x, p, sizeof(x)); } 
  void sys_getint(int *p) { memcpy(p, &x, sizeof(x)); } 
  ```

• Suppose a user calls `getint(buf)`
 - Well-behaved program: `buf` points to user space
 - Malicious program: `buf` points to unmapped memory
 - Malicious program: `buf` points to kernel memory
 • We’ve just written to kernel space! Oops!
Another Attack

• Can we compromise security with *setint(buf)*?
 - What if *buf* points to private kernel data?
 • *E.g.*, file buffers
 - Result can be read with *getint*
The Solution: `copy_from_user`, `copy_to_user`

- Our example should be written
  ```c
  int x;
  void sys_setint(int *p) { copy_from_user(&x, p, sizeof(x)); } 
  void sys_getint(int *p) { copy_to_user(p, &x, sizeof(x)); } 
  ```

- These perform the required safety checks
 - Return number of bytes that couldn’t be copied
 - `from_user` pads destination with 0’s if couldn’t copy
It’s Easy to Forget These

- Pointers to kernel and user space look the same
 - That’s part of the point of the design
- Linux 2.4.20 has 129 syscalls with pointers to user space
 - All 129 of those need to use `copy_from/to`
 - The `ioctl` implementation passes user pointers to device drivers (without sanitizing them first)
- The result: Hundreds of `copy_from/_to`
 - One (small) kernel version: 389 from, 428 to
 - And there’s no checking
User/Kernel Type Qualifiers

- We can use type qualifiers to distinguish the two kinds of pointers
 - kernel -- This pointer is under kernel control
 - user -- This pointer is under user control

- Subtyping \texttt{kernel < user}
 - It turns out \texttt{copy_from/copy_to} can accept pointers to kernel space where they expect pointers to user space
Type Signatures

- We add signatures for the appropriate fns:

  ```c
  int copy_from_user(void *kernel to,
                     void *user from, int len)

  int memcpy(void *kernel to,
             void *kernel from, int len)

  int x;
  void sys_setint(int *user p) {
    copy_from_user(&x, p, sizeof(x));
  }
  void sys_getint(int *user p) {
    memcpy(p, &x, sizeof(x));
  }
  ```
Experimental Results

• Ran on two Linux kernels
 - 2.4.20 -- 11 bugs found
 - 2.4.23 -- 10 bugs found

• Needed to add 245 annotations
 - Copy_from/to, kmalloc, kfree, ...
 - All Linux syscalls take user args (221 calls)
 • Could have be done automagically (All begin with sys_)

• Ran both single file (unsound) and whole-kernel
 - Disabled subtyping for single file analysis
More Detailed Results

• 2.4.20, full config, single file
 - 512 raw warnings, 275 unique, 7 exploitable bugs
 • Unique = combine msgs for user qual from same line

• 2.4.23, full config, single file
 - 571 raw warnings, 264 unique, 6 exploitable bugs

• 2.4.23, default config, single file
 - 171 raw warnings, 76 unique, 1 exploitable bug

• 2.4.23, default config, whole kernel
 - 227 raw warnings, 53 unique, 4 exploitable bugs
Observations

• Quite a few false positives
 - Large code base magnifies false positive rate

• Several bugs persisted through a few kernels
 - 8 bugs found in 2.4.23 that persisted to 2.5.63
 - An unsound tool, MECA, found 2 of 8 bugs
 - ==> Soundness matters!
Observations

- Of 11 bugs in 2.4.23...
 - 9 are in device drivers
 - Good place to look for bugs!
 - Note: errors found in “core” device drivers
 - (4 bugs in PCMCIA subsystem)

- Lots of churn between kernel versions
 - Between 2.4.20 and 2.4.23
 - 7 bugs fixed
 - 5 more introduced
Conclusion

• Type qualifiers are specifications that...
 - Programmers will accept
 • Lightweight
 - Scale to large programs
 - Solve many different problems

• General type qualifiers now available for Java
 - See work by Ernst et al on pluggable types
 • Applying to information flow properties