CMSC 631 – Program Analysis and Understanding
Fall 2017

Abstract Interpretation

Based on lectures by David Schmidt, Alex Aiken, Tom Ball, and Cousot & Cousot
What is an Abstraction?

- A property from some domain

- Blue (color)
- Planet (classification)
- 6000..7000km (radius)
Example Abstraction

Concrete values: sets of integers

Abstract values

Concretization function γ maps each abstract value to concrete values it represents
Abstraction is Imprecise

Concrete values: sets of integers

Abstract values

Abstraction function α maps each concrete set to the best (least imprecise) abstract value
Composing α and γ

Concrete values: sets of integers

Abstract values

Abstraction followed by concretization is sound but imprecise
\(\alpha\) and \(\gamma\) Form a Galois Insertion

- \(\alpha\) and \(\gamma\) are monotonic
 - Recall: \(f\) is monotonic if \(x \leq y \Rightarrow f(x) \leq f(y)\)
 - Also called “order preserving”
- \(S \subseteq \gamma(\alpha(S))\) for any concrete set \(S\)
- \(\alpha(\gamma(A)) = A\) for any abstract element \(A\)
Plan

• A simple example
 ■ Approximating the sign of an arithmetic expression

• A more realistic example
 ■ Approximating sets of integers by ranges in a while language

• Convergence and precision
 ■ Widening and narrowing
Concrete Language

• Concrete domain:
 ▪ Sets of Integers : 2^Z

• Expressions: integers and multiplication
 ▪ $e ::= i \mid e \cdot e \mid e + e \mid -e$

• Standard semantics of the program
 ▪ $Eval : e \rightarrow Z$
 ▪ $Eval(i) = i$
 ▪ $Eval(e1 \cdot e2) = Eval(e1) \times Eval(e2)$
 ▪ …
Abstract Language

• Abstract domain: 0 and signs and “don’t know”
 ▪ $a ::= 0 \mid + \mid - \mid T$

• Programs: abstract values and multiplication
 ▪ $ae ::= a \mid ae \ast ae \mid ae + ae \mid -ae$

• Semantics of the program
 ▪ Define $\text{Acomp} : e \rightarrow ae$ and $\text{Abseval} : ae \rightarrow a$
 ▪ Let $\text{AEval} : e \rightarrow a$ be $\text{Abseval} \bullet \text{Acomp}$
 - Abstract concrete constants, then evaluate abstractly
 - But we define AEval directly next
Semantics of abstract expressions

- Define an abstract semantics that computes only the sign of the result

\[\text{AEval} : e \rightarrow \{-, 0, +, T\} \]

\[\text{AEval}(i) = \begin{cases}
+ & i > 0 \\
0 & i = 0 \\
- & i < 0
\end{cases} \]

\[\text{AEval}(e_1 \times e_2) = \text{AEval}(e_1) \times \text{AEval}(e_2) \]

\[\text{AEval}(e_1 + e_2) = \text{AEval}(e_1) + \text{AEval}(e_2) \]

\[\text{AEval}(-e_1) = -\text{AEval}(e_1) \]
Semantics of abstract operations

\[
\begin{array}{c|cccc}
\times & + & 0 & - & T \\
\hline
+ & + & 0 & - & T \\
0 & 0 & 0 & 0 & 0 \\
- & - & 0 & + & T \\
T & T & 0 & T & T \\
\end{array}
\]

\[
\begin{array}{c|cccc}
+ & + & 0 & - & T \\
\hline
+ & + & + & T & T \\
0 & 0 & + & 0 & - T \\
- & T & - & - & T \\
T & T & T & T & T \\
\end{array}
\]

\[
\begin{array}{c|cccc}
- & + & 0 & - & T \\
\hline
- & 0 & + & T \\
\end{array}
\]
Two Ways to Lose Information

- OK: Abstraction still precise enough
 - Eval((5 * 5) + 6) = 31
 - AEval((5*5) + 6) = (+ × +) ÷ + = +
 - Abstractly, we don’t know which value we computed
 - ...but we don’t care, since we only want the sign

- Not so good: “Don’t know” values
 - Eval((1 + 2) + -3) = 0
 - AEval((1 + 2) + -3) = (+ ÷ +) ÷ - = + ÷ - = ⊤
 - We don’t know which value we computed
 - ...and we can’t even figure out its sign
Adding Integer Division

- What happens when we divide by zero?
 - If we divide any integer in a set by 0, the result is the empty set, since \(x \div 0 \) is undefined.

<table>
<thead>
<tr>
<th>(\div)</th>
<th>+</th>
<th>0</th>
<th>-</th>
<th>(\top)</th>
<th>(\bot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>(\top)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>0</td>
<td>(\bot)</td>
</tr>
<tr>
<td>-</td>
<td>?</td>
<td>0</td>
<td>?</td>
<td>(\top)</td>
<td>(\bot)</td>
</tr>
<tr>
<td>(\top)</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td>(\bot)</td>
<td></td>
</tr>
<tr>
<td>(\bot)</td>
<td></td>
</tr>
</tbody>
</table>

\(\gamma(\bot) = \emptyset \)

What should the \(? \) be?
- *Hint:* what is the result of 5 divided by 7?

Why is the second-to-last row all \(\bot \)?
- *Hint:* what numbers are included in \(\top \)?

Could gain precision by extending \(a \) with “0 or +” and “0 or −”
The Abstract Domain

• Look, Ma, a lattice!

• We’ve got:
 ▪ A set of elements \(\{ \bot, +, 0, -, \top \} \)
 ▪ A relation \(\sqsubseteq \) that is
 – Reflexive
 – Anti-symmetric
 – Transitive
 ▪ And
 – The least upper bound (lub, \(\sqcup \)) and greatest lower bound (glb, \(\sqcap \)) exists for any pair of elements
 – So it’s a lattice
Abstraction and Concretization

- Concretization function γ

 \[
 \begin{align*}
 \gamma(\top) &= \text{all integers} \\
 \gamma(+) &= \{i \mid i > 0\} \\
 \gamma(0) &= \{0\} \\
 \gamma(-) &= \{i \mid i < 0\} \\
 \gamma(\bot) &= \emptyset
 \end{align*}
 \]

- Abstraction function maps concrete values (sets of integers) to the *smallest* valid abstract element

 \[
 \alpha(S) = \left(\begin{array}{c}
 - \exists i \in S. i < 0 \\
 \bot \quad \text{otherwise}
 \end{array} \right) \sqcup \left(\begin{array}{c}
 0 \quad \exists i \in S. i = 0 \\
 \bot \quad \text{otherwise}
 \end{array} \right) \sqcup \left(\begin{array}{c}
 + \exists i \in S. i > 0 \\
 \bot \quad \text{otherwise}
 \end{array} \right)
 \]
Definition

• An abstract interpretation consists of
 ▪ A concrete domain S and an abstract domain A
 ▪ Concretization and abstraction functions that form a Galois insertion [of A into S]
 ▪ A (sound) abstract semantic function

• Recall: α and γ form a Galois insertion if
 ▪ α and γ are monotone
 ▪ $S \subseteq \gamma(\alpha(S))$ or $\text{id} \leq \gamma \alpha$ for any concrete set S
 ▪ $A = \alpha(\gamma(A))$ or $\text{id} = \alpha \gamma$ for any abstract element A
Our abstraction is sound if
- \(\text{Eval}(e) \in \gamma(\text{AEval}(e)) \)

Soundness proof: next
Conditions for Correctness

• We can show that if
 • \(\alpha \) and \(\gamma \) form a Galois insertion
 • And abstract operations \(\text{op} \) are locally correct
 - \(\gamma(\text{op}(a_1, \ldots, a_n)) \supseteq \text{op}(\gamma(a_1), \ldots, \gamma(a_n)) \)
 - Note: We’ve extended \(\text{op} \) pointwise to sets
 - I.e., if \(S \) and \(T \) are sets, \(S+T = \{s+t \mid s \in S, t \in T\} \)

• Then the abstract interpretation is sound
Proof: Show $\text{Eval}(e) \in \gamma(\text{AEval}(e))$

- By structural induction on expressions
 - Base cases: an integer i, so $\text{Eval}(i) = i$
 - if $i < 0$ then $\gamma(\text{AEval}(i)) = \gamma(-) = \{j \mid j < 0\}$
 - Other cases similar
 - Induction: for any operation
 - $\text{Eval}(e_1 \text{ op } e_2)$
 - $= \text{Eval}(e_1) \text{ op } \text{Eval}(e_2)$ by definition of Eval
 - $\in \gamma(\text{AEval}(e_1)) \text{ op } \gamma(\text{AEval}(e_2))$ by induction
 - $\subseteq \gamma(\text{AEval}(e_1) \text{ op } \text{AEval}(e_2))$ by local correctness of op
 - $= \gamma(\text{AEval}(e_1 \text{ op } e_2))$ by definition of AEval
A Simple Imperative Language

• For arithmetic language
 - Number of operations in Aeval was the same as eval
 - No loops, so convergence is trivial

• Slightly more realistic
 - $c ::= \text{skip} \mid c; c \mid x := e \mid \text{if0 } e \text{ then } c \text{ else } c \mid \text{while0 } e \text{ do } c$
 - $e ::= \ldots \mid e < e \mid \ldots \text{ etc.}$

• Standard concrete (big step) semantics

• Goal: approximate the collecting semantics of c
Concrete Semantics

- Semantics over states and numbers
 - \(\langle e, \sigma \rangle \rightarrow n \)
 - \(\langle c, \sigma \rangle \rightarrow \sigma \)

- Standard rules
 - \(\langle x, \sigma \rangle \rightarrow \sigma(x) \)
 - \(\langle n, \sigma \rangle \rightarrow n \)
 - \(\langle e, \sigma \rangle \rightarrow n \)
 - \(\langle x := e, \sigma \rangle \rightarrow \sigma[x \mapsto n] \)
 - \(\langle \text{skip}, \sigma \rangle \rightarrow \sigma \)
 - \(\langle c0, \sigma \rangle \rightarrow \sigma0 \)
 - \(\langle c1, \sigma0 \rangle \rightarrow \sigma1 \)
 - \(\langle c0; c1, \sigma \rangle \rightarrow \sigma1 \)
Collecting Semantics

• Resembles collecting semantics

 ▪ $\langle e, S \rangle \rightarrow N$
 ▪ $\langle c, S \rangle \rightarrow S'$

 • Where S is a set of states, and N is a set of numbers

• Many rules are straightforward liftings

\[
\langle n, S \rangle \rightarrow \{n\} \quad \quad \langle x, S \rangle \rightarrow \{n \mid \sigma \in S \land n = \sigma(x)\}
\]
More (straightforward) rules

\[(\text{skip}, S) \rightarrow S \]
\[(\text{c0}, S) \rightarrow S_0 \]
\[(\text{c1}, S_0) \rightarrow S_1 \]
\[(\text{c0}; \text{c1}, S) \rightarrow S_1 \]

\[(\text{e}, S) \rightarrow N \]
\[S' = \{ \sigma' \mid (n \in N) \land (\sigma \in S) \land \sigma' = \sigma[x \mapsto n] \} \]
\[(x := e, S) \rightarrow S' \]
Conditionals

\[T = \{ \sigma \mid \sigma \in S \land \langle e, \{\sigma\} \rangle \rightarrow \{0\} \} \]
\[F = \{ \sigma \mid \sigma \in S \land \langle e, \{\sigma\} \rangle \rightarrow \{n\} \land n \neq 0\} \]
\[\langle c0, T \rangle \rightarrow S1 \quad \langle c1, F \rangle \rightarrow S2 \]

\[\langle \text{if} 0 \ e \ \text{then} \ c0 \ \text{else} \ c1, \ S \rangle \rightarrow S1 \cup S2 \]
Loops

\[T = \{ \sigma \mid \sigma \in S \land \langle e, \{\sigma\} \rangle \rightarrow \{0\} \} \]
\[\langle c, T \rangle \rightarrow S1 \quad S1 \cup S \neq S \]
\[\langle \text{while}0 \ e \ \text{do} \ c, \ S1 \cup S \rangle \rightarrow S2 \]

\[\langle \text{while}0 \ e \ \text{do} \ c, \ S \rangle \rightarrow S2 \]

\[T = \{ \sigma \mid \sigma \in S \land \langle e, \{\sigma\} \rangle \rightarrow \{0\} \} \]
\[\langle c, T \rangle \rightarrow S1 \quad S1 \cup S = S \]
\[F = \{ \sigma \mid \sigma \in S \land \langle e, \{\sigma\} \rangle \rightarrow \{n\} \land n \neq 0 \} \]

\[\langle \text{while}0 \ e \ \text{do} \ c, \ S \rangle \rightarrow F \]

Found a fixed point
Work out an example

• Example program c is

 while ($x < 4$) { $x := x + 2$ }

• Suppose we compute $\langle c, S \rangle \rightarrow S'$ with $S = \{ \sigma \}$

 • If σ is $[x \mapsto 0]$ then what is S'?

 • What is the fixed point of S at the beginning of the loop?
Soundness of Collecting Semantics

• Theorem: For all \(S, c, \sigma \in S \), and \(\sigma' \)
 \[\langle c, \sigma \rangle \rightarrow \sigma' \iff \langle c, S \rangle \rightarrow S' \text{ and } \sigma' \in S' \]

• Thus, collecting semantics directly computes the result of all possible executions of \(c \) in stores \(S \)
 \[\text{But it’s uncomputable!} \]

• Goal: perform an abstract interpretation of the collecting semantics
 \[\text{Computable, and thus, by soundness, approximates the result of all runs} \]
Abstract domains

- Abstract values, and stores
 - \(N ::= + \mid 0 \mid - \mid T \mid \bot \)
 - \(S: \text{Var} \rightarrow N \)
- \(N \) and \(S \) are lattices
 - Proof as an exercise
- Note that \(S \) treats each variable independently
 - Cannot characterize stores in which the values of variables are always correlated
Command execution

\[\langle \text{skip, S} \rangle \rightarrow S \]
\[\langle e, S \rangle \rightarrow N \]
\[\langle x := e, S \rangle \rightarrow S[x \mapsto N] \]
\[\langle c_0, S \rangle \rightarrow S_0 \]
\[\langle c_1, S_0 \rangle \rightarrow S_1 \]
\[\langle c_0; c_1, S \rangle \rightarrow S_1 \]

All states such that \(e \) is zero

\[\langle c_0, S | e = 0 \rangle \rightarrow S_0 \]
\[\langle c_1, S | e \neq 0 \rangle \rightarrow S_1 \]
\[\langle \text{if0 e then c0 else c1, S} \rangle \rightarrow S_0 \sqcup S_1 \]
Loops

\[\langle c, S\mid e=0\rangle \rightarrow S_1 \quad S_1 \sqcup S \neq S\]

\[\langle \text{while } 0 \text{ e do } c, S_1 \sqcup S \rangle \rightarrow S_2\]

\[\langle \text{while } 0 \text{ e do } c, S \rangle \rightarrow S_2\]

\[\langle c, S\mid e=0\rangle \rightarrow S_1 \quad S_1 \sqcup S = S\]

\[F = S\mid e\neq0\]

\[\langle \text{while } 0 \text{ e do } c, S \rangle \rightarrow F\]
Soundness

• Soundness now refers to the collecting semantics, rather than the standard semantics

- If $S = \alpha(S)$ then $\langle c, S \rangle \rightarrow S_2$ implies $\langle c, S \rangle \rightarrow S_2$ where $\alpha(S_2) \subseteq S_2$
 - Alternatively, that $S_2 \subseteq \gamma(S_2)$
The Intervals Domain

- Abstract domain of integer ranges (for single variable)
 - \(A ::= \{ [l, u] \mid l \in \mathbb{Z} \cup -\infty \land u \in \mathbb{Z} \cup +\infty \land l \leq u \} \)
 - \([l_1, u_1] \subseteq [l_2, u_2] \iff l_2 \leq l_1 \land u_1 \leq u_2 \)
 - \([l_1, u_1] \sqcup [l_2, u_2] = [\min(l_1, l_2), \max(u_1, u_2)] \)

- Abstraction function \(\alpha : S \rightarrow A \)
 \[
 \alpha(S) = [\min(\{v \mid v \in S\}), \max(\{v \mid v \in S\})] \]

- Concretization function \(\gamma : A \rightarrow S \)
 \[
 \gamma([l, u]) = \{ n \mid l \leq n \leq u \} \]
Galois Insertion?

• Recall:
 - \(x \subseteq \gamma(\alpha(x)) \)
 - \(z = \alpha(\gamma(z)) \)

• Examples:
 - \(x = \{-2, 8, -5\} \)
 - \(\alpha\{x\} = [-5, 8] \) and \(\gamma(\alpha(x)) = \{-5, -4, \ldots, 8\} \)
 - \(z = [-8, 8] \)
 - \(\gamma\{z\} = \{-8, -7, \ldots, 7, 8\} \) and \(\alpha(\gamma(z)) = [-8, 8] \)
Abstract Interpretation

\[x := 0 \]
\[\text{while } (x \leq 100) \]
\[x := x + 2 \]

\[x \mapsto [0,0] \sqcup [2,2] \]
\[x \mapsto [0,2] \]
\[x \mapsto [2,2] \sqcup [2,4] \]
\[x \mapsto \bot \]
Abstract Interpretation

\[
x := 0 \\
\text{while } (x \leq 100) \\
x := x + 2
\]
Precision

• Abstract interpretation for loop entry
 - \((x \mapsto [0, 102] \in A) \)
 - \(\gamma([0, 102]) = \{0, 1, 2, \ldots, 102\} \)

• But collecting semantics gives
 - \(\{0, 2, 4, \ldots, 102\} \)
Convergence

• How do we know that we will reach a fixed point?
 ■ We could pick A to be a finite lattice
 ■ Or, A could be an infinite lattice with no infinite ascending chain

• But our choice of A satisfies neither of these conditions

• What about speed of convergence?
 ■ Example took 50 iterations to converge
 ■ Can we do better?
Widening and Narrowing

- Widening guarantees convergence even for infinite lattices
 - But loses precision
 - Also usually improves rate of convergence even for finite lattices

- Narrowing recovers precision lost by widening
Widening : \triangledown

- Given a lattice L, a widening $\triangledown : L \times L \rightarrow L$ requires
 - $\forall x, y \in L. x \sqsubseteq x \triangledown y$
 - $\forall x, y \in L. y \sqsubseteq x \triangledown y$

 For all chains $x^0 \sqsubseteq x^1 \sqsubseteq \ldots$,

 $y^0=x^0, \ldots, y^{i+1} = y^i \triangledown x^{i+1}, \ldots$

 is not strictly increasing

- Similar to role of lub \sqcup
Example Widening for Intervals

• $\perp \triangledown X = X$
• $X \triangledown \perp = X$
• $[l_1, u_1] \triangledown [l_2, u_2] =$

 \begin{align*}
 &\text{[if } l_2 < l_1 \text{ then } -\infty \text{ else } l_1, \\
 &\text{if } u_2 > u_1 \text{ then } +\infty \text{ else } u_1\text{]}\end{align*}

Given a sequence of iterates for a loop

$x^0, x^1, \ldots, x^i, \ldots$

Use widening instead to compute

$y^0 = x^0, \ldots, y^{i+1} = y^i \triangledown x^{i+1}$
Widening Example

\[x := 0 \]

while \((x \leq 100)\)

\[x := x + 2 \]

\[x^1 \mapsto \perp \quad x^2 \mapsto x^1 \quad [0,0] = [0,0] \]

\[x^1 \mapsto \perp \quad x^2 \mapsto x^1 \quad [2,2] = [0,+\infty] \]

\[x^1 \mapsto [2,2] \quad x^2 \mapsto [2,2] \quad [2,102] = [2, +\infty] \]

\[x \mapsto \perp \]

\[x^2 \mapsto x^1 \quad \triangledown \quad [0,100] = [0,100] \]
Conclusions

• Galois connections with finite lattices or Widening/Narrowing?
 ▪ Typically some combination of the two

• Theory is completely general
 ▪ What are good choices for modeling data structures and the heap? Higher-order functions? Objects?

• Picking the right abstract domains; finding the right widening/narrowing can be tricky
Conclusions

• Cousot and Cousot paper(s) seminal work(s)

• The *theory* of abstract interpretation is often confused with using it to construct tool (e.g., data flow analysis)

• But there are successful tools:
 - ASTREE has proved the absence of runtime errors in the primary control software of the Airbus A340
 - PolySpace C and Ada verifiers

• Our own tool: